Out of the Shadows: A review of the archaeological evidence for the isolation, interaction, and abandonment of the British Virgin Islands in the pre-Columbian Caribbean

by

Deborah Diane Davis

(School reference number 079019194)

Submitted for the degree of
Master of Arts, Archaeology and Heritage
School of Archaeology and Ancient History
University of Leicester

January 2011
Abstract

Poised between the Lesser Antilles and the Greater Antilles, the position of the British Virgin Islands raises interesting questions regarding their role in regional interactions in the Antilles archipelago. Did they serve as an exploratory frontier, a marketplace, a bridge of communication, or a hub of interaction encompassing aspects of some or all of these functions for the peoples of the prehistoric Caribbean? Or were they an isolated chain of islands bypassed by longer distance trade and exchange networks? While much research has been undertaken by archaeologists concerning the prehistory of the Virgin Islands of the United States, the role of the British Virgin Islands (“BVIs”) is in need of closer attention and additional archaeological investigation. This dissertation is a focused examination of the potential interaction and relative isolation of the British Virgin Islands within the context of the wider Antillean archipelago during the pre-Columbian period. Although there is less evidence for prehistoric habitation and interaction of the islands of the BVIs than for the U.S. Virgin Islands or other islands in the Antilles, what research has been conducted has given strong proof of occupation or activity in the BVIs from the Saladoid through to the Chican Ostionoid (Taíno) culture. At present, there is no evidence for long-term occupation of the British Virgin Islands in the late Ostionoid or protohistoric periods, likely depopulated prior to European contact although possibly used sporadically as a gathering place for festivals and later as a war-torn frontier between the Taíno and Caribs. By a focused examination and comparative review of the social dynamics and political structures illustrated by settlement patterns and cultural materials, increased understanding of the occupation of the role of the BVIs as a regional hub of interaction during prehistoric times may supplement and inform further areas of archaeological investigation.

This dissertation contains 22,177 words. Cover page: Fort Point style spindle whorl found on Virgin Gorda (drawing by Jeffrey M. Gross from Figueredo 1978: back cover).
Out of the Shadows: A review of the archaeological evidence for the isolation, interaction, and abandonment of the British Virgin Islands in the pre-Columbian Caribbean

by

Deborah Diane Davis
(School reference number 079019194)

Submitted for the degree of
Master of Arts, Archaeology and Heritage
School of Archaeology and Ancient History
University of Leicester

January 2011
TABLE OF CONTENTS

Table of Contents ... i
List of Figures .. ii
Acknowledgements ... v
CHAPTER 1: Introduction ... 1
CHAPTER 2: Methodology & Objectives .. 5
CHAPTER 3: Background of Caribbean Archaeology ... 9
 Three broad cultural epochs which affected the British Virgin Islands 13
 The Archaic Age ... 13
 The Saladoid migration ... 15
 The Ostionoids ... 17
CHAPTER 4: Geology, Climate and Natural Resources of the British Virgin Islands 21
CHAPTER 5: Previous archaeological research in the British Virgin Islands 26
 Tortola .. 32
 Virgin Gorda .. 44
 Jost Van Dyke ... 46
 Little Jost Van Dyke .. 51
 Guana Island ... 58
 Anegada ... 63
CHAPTER 6: Analysis & Interpretation ... 76
 Beginning in Shadows .. 79
 Stepping Into the Light ... 80
 Back into the Shadows ... 86
 Conclusion ... 88
References ... 92
Appendix A ... 100
LIST OF FIGURES*

*All photos by Deborah Davis unless cited otherwise.

Figure 1. Map of Antillean archipelago with Virgin Islands Group (circled red) (figure after Rouse 1992: 2).. 2

Figure 2. The major islands of the Virgin Islands Group (not to scale) (figure after Bates 2001: 19). .. 4

Figure 3. The British Virgin Islands... 4

Figure 4. Overlooking the highly-developed Road Town harbor on Tortola, British Virgin Islands. Photo by Deborah Davis © 2001... 15

Figure 5. Early Saladoid White-on-Red (WOR) pottery from the Folmer Anderson Collection, Christiansted National Historic Site. Courtesy, Southeast Archaeological Center, U.S. National Park Service.. 17

Figure 6. Early Saladoid Zone- Incised (ZIC) wares from the Folmer Anderson Collection, Christiansted National Historic Site. Courtesy, Southeast Archaeological Center, U.S. National Park Service.. 17

Figure 7. Saladoid bowl with distinctive, characteristic white-on-red (WOR) paint from St. Croix, US Virgin Islands. Courtesy, Yale Peabody Museum [Cat. No. ANT. 237762] ... 17

Figure 8. Elenan Ostionoid pottery: a-c from the Santa Elena culture, d from the Monserrate culture (figure after Rouse 1992: 125). .. 18

Figure 9. Chican Ostionoid pottery: a, Capá style; b, Boca Chica style; c, Esperanza style (figure after Rouse 1992: 112)... 19

Figure 10. Chican zemi from the Dominican Republic. Courtesy, National Museum of the American Indian, Smithsonian Institution [Cat. No. 5/3753]................................. 20

Figure 11. Chican Ostionoid purging stick/vomiting spatula from Magen's Bay, St. Thomas, US Virgin Islands. Courtesy, National Museum of the American Indian, Smithsonian Institution [Cat. No. 6/1374]. .. 20

Figure 12. Caribbean Basin. Courtesy, CaribSeek.com (accessed 17 January 2011). 21

Figure 13. Geography of the Caribbean Basin with approximate area of the Puerto Rican Plateau circled red (after Ashdown, 1979: 1; Dennis 2004: 71). 22
Figure 14. Trade winds and currents in the Caribbean (figure after Ashdown 1979: 3)... 24

Figure 15. Timeline of archaeological investigation of the pre-Columbian past of the British Virgin Islands... 26

Figure 16. Sign at the entry of the Virgin Islands Folk Museum.. 30

Figure 17. Display at the Virgin Islands Folk Museum explaining "Arawak Culture" with cultural objects from South America above... 30

Figure 18. Prehistoric sites known or reported on Tortola (sites with * preceding the name were reported, but unable to be located). Major sites are circled red (after Drewett 2000: 114)... 34

Figure 19. Site of Belmont Bay excavations during 1996-1997 (from Drewett 2000: 122). ... 35

Figure 20. Belmont Hill viewed from the southwest side. Belmont Pond is visible to the right of the hill, with the Belmont Bay site behind the pond. 36

Figure 21. Sunset over Belmont Hill with lush vegetation fringing Belmont Bay (Long Bay)... 37

Figure 22. Belmont Site positioned midway between St. Thomas and Virgin Gorda. Image courtesy, Google Earth.. 38

Figure 23. Sun carving on stone at edge of ball court (figure from Drewett 2003b). 39

Figure 24. Paraquita Bay site test pit area (crosshatched and numbered "2") with red star denoting approximate area of pit with possible ritual deposits (figure after Drewett 2000: 115)... 43

Figure 25. Virgin Gorda, BVI. Courtesy, Google Earth... 43

Figure 26. Thumb-impressed beaker rim fragment of utilitarian ware (drawing by Jeffrey M. Gross from Figueredo 1980: 30)... 45

Figure 27. Discoidal fragment from Gun Creek (drawing by Jeffrey M. Gross from Figueredo 1980:28). ... 45

Figure 28. Spindle whorl from Fort Point (drawing by Jeffrey M. Gross from Figueredo 1978: back cover). .. 45

Figure 29. Fort Point site (denoted by yellow star) near the southern tip of Virgin Gorda (scale 1:25,000).. 46

Figure 30. Survey of "Stratum 1" areas of Jost Van Dyke (figure from Bates 2001: 180): ... 47
Figure 31. "Stratum 2" areas (planned and actual) (figure from Bates 2001: 184)............. 47

Figure 32. Cape Wright site (figure after Bates 2001: 204). .. 48

Figure 33. Test units at Cape Wright (figure from Bates 2001: 204). 48

Figure 34. Plan of test unit B as extended (figure from Bates 2001: 219). 49

Figure 35. Cave site on Little Jost Van Dyke. .. 53

Figure 36. Interior of cave site on Little Jost Van Dyke. ... 53

Figure 37a and b. Prehistoric pottery sherds (two views) found outside cave site on Little Jost Van Dyke. ... 54

Figure 38. Pottery sherds from second test pit at cave site on Little Jost Van Dyke.............. 55

Figure 39. Series of stone terrace levels leading to the cave on Little Jost Van Dyke............. 56

Figure 40. Possible stone tool marks on boulder .. 56

Figure 41. Looking across the ecotone toward the Cape Wright site. 57

Figure 42. Aerial view of the ecotone between Jost Van Dyke and Little Jost Van Dyke. Courtesy, Google Earth. ... 57

Figure 43. Shelf-like feature cut into boulder outside cave entrance on Little Jost Van Dyke. ... 58

Figure 44. Guana Island, BVI. Courtesy, Google Earth... 60

Figure 45. Elenan-Ostionoid Bowl from Guana Island (figure from Righter 2008: cover). ... 62

Figure 46. Anegada survey with location of two conch shell mounds circled red (figure after Gross 1975: 12). .. 62

Figure 47. *Strombus gigas* shell showing small hole in lower end of spire believed to indicate prehistoric collection of the animal as differentiated from modern fisherman's techniques (drawing by Jeffrey M. Gross) (figure from Gross 1975: 14, 16). .. 64

Figure 48. Anegada with known archaeological sites of interest. Image courtesy, Google Earth. .. 66

Figure 49. A Chart of the Islands of Anegada together with the Vessels wrecked thereon, by Chas. Noyce, June 16, 1824. Image courtesy, Bickerstaff's Books, Maps, &c. .. 67
Figure 50. Excerpt of 1824 Anegada map drawn by Chas. Noyce showing identification of four "Pyramids of Conch Shells left by the Charaibe Indians." Image courtesy, Bickerstaff’s Books, Maps, &c. 68

Figure 51 a through f. Ceramic assemblage of the 2003 Anegada collection. 73

Figure 52 a (exterior) and b (interior). Largest sherd with lime concretion found at depth of 10-20 cm. .. 74

Figure 53. Four potsherds (Sherds 1 through 4) from the 2003 Anegada collection found at depth 0-10 cm (not to scale). .. 74

Figure 54. Great Camanoe, BVI. Courtesy, Google Earth. .. 77

Figure 55. Chican bowl from Mosquito Island (not to scale). Courtesy, Smithsonian Institution ... 85

Figure 56. Chican Ostionoid bowl (ca. AD 1200 - 1500) from the Dominican Republic. Courtesy, Smithsonian Institution [cat. no. 19/7696]. 85

LIST OF TABLES

Table 2. Artefacts from the Anegada 2003 collection viewed by the author....................... 71

Table 3. Ceramic assemblage of the 2003 Anegada collection by unit and level quantity ... 71

Table 4. Proportional analysis of the ceramic assemblage of the 2003 Anegada collection ... 72

Table 5. Interpretation of the chronology of stratigraphic occupation layers.................... 75
ACKNOWLEDGEMENTS

I am deeply indebted to many people who assisted with my research of the prehistory of the British Virgin Islands. First and foremost, I give thanks to Dr. Jago Cooper (University of Leicester) and Alfredo E. Figueredo for your willingness to mentor my progress, answer questions, guide research and to help a novice in the field find her way in this academic process. Your expertise, enlightening advice, generous assistance and encouragement have been invaluable throughout. I am especially grateful to Alfredo for providing me with unpublished material and for answering my frequent questions concerning his archaeological work in the Virgin Islands, as well as giving me a supplementary education in Caribbean ceramic typology! Special thanks go to Marilee Meyer of the British Virgin Islands Heritage Conservation Group, Dr. James D. Lazell of The Conservation Agency, Dr. Michael Gibbons, Dr. Peter Drewett, and Dr. Brian Bates for responding to my queries. I wish to thank John Chenowith (PhD candidate, University of Berkeley) for inviting me to dig with his team of University of Berkeley students in the British Virgin Islands in 2010. John was instrumental in arranging for me to view the “Anegada collection” from 2003 held by the British Virgin Islands National Parks Trust. I also extend my gratitude to that organization and to its Deputy Director, Esther Georges, who kindly provided such access. I wish to thank Caitlin Pritzkat, Anthony Vasquez, and Ajani Skelton for their camaraderie and meaningful contributions during our field season on Little Jost Van Dyke; they are truly inspirational people and I hope to work with each of them again one day. I wish to thank Dr. Mark Pluciennik, and the faculty and staff of the Distance Learning Office of the School of Archaeology and Ancient History at the University of Leicester for their superb and always swiftly provided assistance, and for providing a first-rate academic experience for a student who was not able to attend a traditional “taught” course on campus. Special thanks go to Dr. Judith Knight and Dr. Kelley Scudder for their enthusiastic support and advice. I am also thankful for the welcome and encouragement I received from the Caribbean archaeologists I met while attending the 23rd Congress of the International Association for Caribbean Archaeology (IACA) and am humbled by their work that I have been privileged to review. To my sister, Carolyn Cockey, thanks for believing in me and reminding me of what is important. Finally, there are not enough words to express my thanks to the warm, welcoming and wonderful people of the British Virgin Islands – thank you for sharing your home and your heritage with me.
No one warned the previous inhabitants of these Virgins that Columbus was about to discover them and that their very lives were soon to be in danger. They were the discovered; their history begins in shadow and ends in shadow.

-- Florence Lewisohn (1966)

CHAPTER 1: INTRODUCTION

The first people to arrive in the Caribbean islands did so in approximately 5,000 B.C. (Wilson, et al. 1998; Kozlowski 1974; Saunders 2005: xii; Wilson 2007: 1). These early explorers found a chain of islands rich in resources and more than 200,000 sq km of uninhabited land (Figure 1). From these earliest human migrants entering the Caribbean, people have been developing inter-island networks for trade and settlement that lasted well into the historical contact period. When Christopher Columbus sailed into the Caribbean in 1492 (Cohen 2011), he found large and dense populations with established social hierarchies well-versed in intensive agriculture and the production of food, tools and other specialized goods (Wilson 2007: 155-158). A growing body of evidence suggests that interisland networks between culturally diverse groups made the continued occupation, economic sustainability and development of such complex polities possible (cf. Watters 1997; Righter 1997; Faber Morse 1997; Allaire 1997; Bates 2001; Drewett 2007; Hardy 2008; Figueredo 1980, 1987; Hofman 1993; Hoogland and Hofman 1999; Keegan and Rodriguez Ramos 2007; Knippenberg and Zijlstra 2008; Reid 2009; Rodriguez Ramos 2008; Saunders 2005; Wilson 1997, 2007; Keegan 2008; Booden, et al. 2008; Coppa, et al. 2008; van Gijn, et al. 2008; Hofman, et al. 2007; Hofman, et al. 2008).
Poised between the northernmost islands in the Lesser Antilles chain and the eastern edge of the Greater Antilles, the centralized geographic location of the Virgin Islands (Figure 2) raises interesting research questions regarding the role they may have played in regional interactions in the Antilles archipelago. Did these islands serve as a frontier for exploration, a filter or marketplace for trade, a bridge of communication, or a general hub of interaction encompassing aspects of some or all of these functions for the peoples of the prehistoric Caribbean? While much research has been undertaken by archaeologists concerning the Virgin Islands of the United States (hereinafter, the “U.S. Virgin Islands”) during the pre-Columbian eras, the role of the British Virgin Islands (hereinafter, the “British Virgin Islands” or “BVIs”; officially known as the United Kingdom’s Overseas Territory of the Virgin Islands) in prehistory has been largely overlooked (with a few notable exceptions) (Righter 2007a: 807; Johnston and Lundberg 1985: 50; cf.: Bates 2001; Chenowith 2008,

Figure 1. Map of Antillean archipelago with Virgin Islands Group (circled red) (figure after Rouse 1992: 2).
2009; Davis and Oldfield 2003; Dookhan 1975, 1994; Drewett, L. 2000; Drewett and Bates 1999; Drewett, P. 2000, 2003a, 2003b, 2007; Figueredo 1972, 1974a, 1974b, 1980; Gross 1975, 1976; Hatt 1938; Hunt and Drewett 2000; Marler and Marler 1978; Pickering 1987; Saunders 2005:7, 286-288; Schomburgk 1832; and White 1983). Questions persist as to whether these islands were becoming increasingly and directly influenced by the cultural groups of the Greater Antilles and whether they were undergoing active change and a period of possible depopulation immediately prior to Columbus’s arrival.

Given their central position in the Antilles chain and their rich environmental resources (despite their relatively small size when compared to the Greater Antilles), the author posits the British Virgin Islands were far more active during the prehistoric period than previously believed. While this dissertation touches on the history of Caribbean archaeology and period of migration into the British Virgin Islands, it is not meant as an exhaustive review of the subject but instead is a narrowly-focused examination of the role of the British Virgin Islands as a potential hub of interaction in the Antillean archipelago in prehistoric times. In particular, through an examination of the settlement patterns in the BVIs, I will look for evidence of cultural interaction with other islands in the Antilles through societal groups, economic factors, religious and ceremonial rites, and displays of power/status. I will also consider whether the evidence to date suggests the islands were, as reported by some historical sources (Lewisohn 1966: 7; Pickering 1987: 8), depopulated prior to the arrival of Columbus and, what may have led to changes in the island demography as reported from ethno-historical sources (Figueredo 2006: 393-399). Through an examination of these factors, this dissertation aims to help fill the current gap in knowledge and understanding of the role of the British Virgin Islands (Figure 3) in prehistoric times.
Figure 2. The major islands of the Virgin Islands Group (not to scale) (figure after Bates 2001: 19).

Figure 3. The British Virgin Islands.
CHAPTER 2: METHODOLOGY & OBJECTIVES

The purpose of the present research is to study the role of the British Virgin Islands as a hub of interaction in the Antillean archipelago during pre-Columbian times. The possible roles and reflections of prehistoric settlements in the BVIs in a regional system of communication and trade throughout the Antillean chain are examined. This study is designed to review the previous archaeological investigation undertaken in the BVIs in order to re-evaluate the degrees of interaction between BVIs and other islands in the pre-Columbian Caribbean through the analysis of resource use and acquisition, cultural traits and traditions, and settlement patterning. In particular, case studies of evidence of Saladoid and Ostionoid occupation in the BVIs are presented to showcase the complexity of these societies and how they interacted with others.

In this dissertation, “settlement” and “site” are used interchangeably to mean villages or places of habitation, whether temporarily or permanently occupied as the focus of this research is on period specific settlement patterns rather than individual communities. The current political division of the Virgin Islands is not assumed to be a factor in this study, other than to highlight the paucity of research in the BVIs when compared with that of the U.S. Virgin Islands. Local environmental factors and variations are considered as they may impact the development of the settlements on the islands and their desirability and accessibility for habitation and trade.

Much of the data used for this study was based on a literature review (published and unpublished) of previous archaeological investigations in the BVIs and elsewhere in the Caribbean and its reliability is therefore subject to the accuracy of the data reported and likely to change as further archaeological field work takes place. Areas of concern remain
where no site in the BVIs has been completely excavated (although substantial field work has taken place on Tortola at Belmont and at the Cape Wright site on Jost Van Dyke), very limited information as to the spatial arrangements of households and villages is available, and nearly all sites lack radiometric dates. The categorization of site types and sizes was based on published field work and comparison of sites in the BVIs to those of nearby islands. Field surveys reported from previous research identified a lack of available data for comparison where areas of likely prehistoric sites have been subject to damage or destruction through natural processes or modern development.

Additionally, data is provided by the author gathered during a field season excavating an historic plantation under the supervision of John Chenowith (PhD candidate, University of California at Berkeley), which included recovery of prehistoric pottery and at least one possible lithic artefact found during surface survey. The author also viewed and photographed artefacts collected by archaeologists (presumably Kevin Oldfield and others although this is not certain, see infra) during investigations in 2003 on the island of Anegada (hereinafter, the “Anegada collection”) which, to her knowledge, have never before been analyzed nor results published, although a report of previous work done by Kevin Oldfield and Dave Davis on the island is available and of great assistance in preliminary analysis of the ceramic assemblage collected during 2003. The Anegada collection is held by the British Virgin Islands National Parks Trust, who graciously allowed the author access to the collection. Digital photographs were taken and notes made as to provenience from the data inscribed on the collection bags. Unfortunately, if notes or reports were made of the investigation on Anegada, the author was not made privy to them and she was unsuccessful in obtaining such further information.
This dissertation investigates the role of the BVIs and its peoples during the pre-Columbian past and considers how they interacted with other islands in the Greater and Lesser Antilles, and periods of possible isolation or abandonment. By a focused examination of the social dynamics and political structures illustrated by settlement patterns and cultural materials, an increased understanding of the occupation of the BVIs during prehistoric times may be achieved which may supplement and inform further areas of archaeological investigation. It is proposed that the BVIs served as a “hub” of exchange in the local region where long distance networks were decaying or not favored.

In this study, the following questions will be addressed:

- Were the forms of socio-political organization utilized by the prehistoric people of the BVIs influenced by wider inter-island interaction?
- Were changes in settlement patterns and cultural materials indicative of local preferences or of regional changes and trends?
- Were the BVIs a regional hub of interaction linking nearby islands in the Antilles chain during prehistoric times?
- Did the BVIs suffer a decline in population prior to the arrival of Columbus?

These questions will be addressed through an examination and comparative review of settlement patterns (both spatial and stratigraphic analysis of household/village units), cultural remains, foodways and alterations to the ecosystem at a local level, and evidence of cultural interaction through the polities established, trade practices, status/power displays, religious rituals and ceremonial traditions, and material artefacts. Given the focused research question of this dissertation, this research is not meant to be an exhaustive treatise
on the role of prehistoric societies and their development nor a compendium of the history of archaeological research in the BVIs (although a synthesis of such is included in summary form). Rather, it is necessarily limited to a general examination of the prehistoric inhabitants of the BVIs, their settlement patterns and cultural materials, and through comparative discussion an assessment of their relative isolation, possible abandonment, and potential roles they may have played as a regional hub in the Antillean archipelago during pre-Columbian times.
CHAPTER 3: BACKGROUND OF CARIBBEAN ARCHAEOLOGY

Beginning with the first European explorers, people have speculated about the settlement of the Caribbean islands from the tools and other remains found. In the early 1500s, Bartolomé de Las Casas noted that the people of the islands were likely very “ancient” as soils from nearby hills had shifted during the rains to cover a fire site so as to bury it completely during the passage of many years (Wilson 2007: 17, quoting Las Casas 1951: 375). In the late 19th and early 20th centuries, scholars believed there had been several series of migrations into the Caribbean, each bringing its own distinct culture in its own discrete time period. In the 1920s, Gudmund Hatt of Copenhagen University in Denmark excavated about 30 sites in the Virgin Islands (Wilson 2007: 18-19). Hatt posited three phases in the prehistory of the Virgin Islands: a pre-ceramic culture characterized by ground and flaked stone tools and lack of pottery he designated “Krum Bay” (after the site he excavated on St. Thomas), a ceramic period characterized by white-on-red (WOR) pottery he called “Coral Bay-Longford), and a later ceramic age phase containing less aptly made pottery with modeling and incision but lacking the WOR painting called “Magens Bay-Salt River” (Wilson 2007: 19). The Salt River site in particular bore marked cultural resemblances to prehistoric sites found in Puerto Rico and the rest of the Greater Antilles. This three-period chronological sequence is still in use today, although considerably more developed and better understood (Wilson 2007: 19; Rouse 1992: 52).

A seminal work in Caribbean archaeology which provides much of the accepted terminology in use today was published in 1992 by Irving Rouse. It constitutes his fifty-five years of research of the prehistory and ethnohistory of the West Indies and describes in
detail the Taíno culture that existed in the Caribbean at the time of contact in 1492. Rouse provides a time scale denoted by Roman numerals (I through IV) from the earliest occupation period (the “Lithic Age”) followed by the “Archaic Age” through early European settlement (Rouse 1990, 1992). Each time period is further divided (i.e., IIa and IIb), and split into series grouping complexes and styles ending with the suffix “-oid” and subseries ending with the suffix “-an” and which are generally named after a specific type site that exhibits the characteristics of the style or where they were first noted (Rouse 1990, 1992). Generally, Rouse asserts the Virgin Islands were uninhabited prior to 1,000 B.C. until the start of the “Krum Bay” culture, which he labels “Ortoiroid,” lasting until approximately 200 B.C. Rouse places the next phase, the “Saladoid” series characterized by WOR pottery, from approximately 200 B.C. through A.D. 600 exemplified by the type sites Prosperity and Coral-Bay/Longford. This is followed by the Ostionoid series, correlated to Hatt’s Magens Bay-Salt River phase, which existed through to the European contact period and known to European explorers and colonists as the “Taíno” Indians (Rouse 1992).

In the past ten years, the “cultural-historical” approach of Rouse’s classification scheme has been questioned and criticized as placing too much emphasis on the similarities of cultures, trying to fit diverging cultural groups with a shared ancestry into neatly defined categories which fail to account for long periods of gradual change and cultural interaction. William Keegan wryly suggests that to overcome this deficiency scholars should “avoid the OID” altogether (Keegan 2001: 238). While others have posited their own schemes of classification with substantiated reasons for each, to employ multiple schemes would be confusing however well-designed the model. As Rouse’s classification scheme remains the most commonly used and the one used to define the majority of material remains recovered in the BVIs, and is therefore the one used in this dissertation (Table).

<table>
<thead>
<tr>
<th>AGE</th>
<th>PERIOD</th>
<th>SERIES</th>
<th>PATTERN</th>
<th>YEARS</th>
<th>ISLANDS</th>
<th>EVIDENCE (by site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proto-</td>
<td>historic</td>
<td></td>
<td>Taíno /</td>
<td>1493-?</td>
<td>Virgin Gorda,</td>
<td>No direct evidence of occupation; ethnohistoric accounts of Taíno refugees and Caribs on the islands</td>
</tr>
</tbody>
</table>
| Formative | IV | Ostionoid | Chican | 1250-1492 | Tortola, Virgin Gorda, Guana Island, Mosquito Island | B: major settlement with easternmost Taíno stone-lined ball court, sun petroglyph, cultural materials;
FP: spindle whorls indicating textile industry
RT: Chicoid wares;
T: late Ostionoid wares;
G: possible Taíno meeting place (see box below);
M: turtle bowl of unknown provenance |
| Ceramic | IIIb | Ostionoid | Elenan | 950-1250 | Anegada, Tortola, Jost Van Dyke, Guana Island, Little Jost Van Dyke, Great Camanoe | A: multiple, expansive conch shell middens (also noted on early 1824 map as Indian monuments); Elenoid wares; radiocarbon dates from conch shells ca. A.D. 1245 ± 80; possible axe fragment from materials not locally available; redwares from unprovenanced collection
B: major settlement with evidence of roundhouses, burials, extensive middens, Elenoid wares, and cultural materials;
<table>
<thead>
<tr>
<th>AGE</th>
<th>PERIOD</th>
<th>SERIES</th>
<th>PATTERN</th>
<th>YEARS</th>
<th>ISLANDS</th>
<th>EVIDENCE (by site)</th>
</tr>
</thead>
</table>
| | | IIIa | Ostionoid | Magensian | 650-950 | Guana Island | G: possible early small settlement indicated by cultural materials and faunal remains
Probable continuation of settlement on the islands of Tortola and Virgin Gorda; possible early settlement on Jost Van Dyke. |
| | | IIb | Saladoid | Aklian (Gun Creek) | 350-650 | Tortola, Virgin Gorda | B: evidence of long-term settlement with abundance of cultural materials, and evidence of textile and stone/shell tool industries
CGB & JB: Saladoid redwares
GC: type site for Gun Creek series; spindle whorls indicating textile industry |
<table>
<thead>
<tr>
<th>AGE</th>
<th>PERIOD</th>
<th>SERIES</th>
<th>PATTERN</th>
<th>YEARS</th>
<th>ISLANDS</th>
<th>EVIDENCE (by site)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G: “primitive barbecue” evidenced by faunal remains dated to ca. A.D. 450; imported chert arrowhead</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G: charcoal and stone axehead found in cave floor radiocarbon dated to ca. 50 B.C.-A.D. 450, though dates may be off by as much as 30%</td>
</tr>
<tr>
<td></td>
<td>IIa</td>
<td>Saladoid</td>
<td>Cuevan</td>
<td>150-350</td>
<td></td>
<td>None, except see “G” and “B” entries in boxes above and below</td>
</tr>
<tr>
<td></td>
<td>IIa</td>
<td>Saladoid</td>
<td>Cedrosian</td>
<td>50-150</td>
<td></td>
<td>B: 2 stone ovates similar to Krum Bay ovates of this period</td>
</tr>
<tr>
<td>Archaic</td>
<td>Ib</td>
<td>Ortoroid</td>
<td>Krumian</td>
<td>2000 B.C.-A.D. 50</td>
<td>Tortola</td>
<td>None</td>
</tr>
<tr>
<td>Lithic</td>
<td>Ia</td>
<td>unknown</td>
<td>unknown</td>
<td>-2000 B.C.</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

Site Key: A=Anegada; B=Belmont, Tortola; CB=Cam Bay, Great Camanoe; CGB=Cane Garden Bay, Tortola; CW=Cape Wright, Jost Van Dyke; FP=Fort Point, Virgin Gorda; G=Guana Island; GC=Gun Creek, Virgin Gorda; JB=Josiah's Bay, Tortola; LJVD=Little Jost Van Dyke; M=Mosquito Island; PB=Paraquita Bay, Tortola; RT=Road Town, Tortola; SM=Sage Mountain, Tortola; T=multiple sites on Tortola.

Three broad cultural epochs which affected the British Virgin Islands

The Archaic Age

The Archaic Age signifies a period characterized by the use of lithics or stone tools in which settlements were becoming increasingly more common. Two groups of migrants were likely the first to enter the Caribbean. The Ortoiroids (ca. 5000 – 200 B.C.), named after Ortoire in eastern Trinidad, likely migrated from the Guianas in South America (Reid 2009: 14, citing Boomert 2000) to settle in the Lesser Antilles moving north up through the island chain all the way to Puerto Rico. The Casimiroids (ca. 4000 – 400 B.C.), named for the type-site of Casimira in southwestern Hispaniola, likely came directly to Cuba and
Hispaniola from Belize in Central America (Reid 2009: 14, citing Saunders 2005). While traditionally the Archaic Age was thought to be defined by the absence of pottery, that has now been debunked as a myth (Reid 2009: 16). Evidence found shows that both groups were making pottery at least 2,000 years prior to the arrival of the Saladoids in about 500 B.C., and there is also evidence of substantial plant cultivation and domestic agricultural activity (Keegan and Ramos 2007: 211-214). Societal groups were not complex and settlements were small (Wilson 2007: 25-58; Rouse 1992: 49-70).

While there is, at present, no published evidence of Archaic Age settlement of the British Virgin Islands, absence of evidence does not indicate evidence of absence as the difficulties in recognizing lithic age sites and the coastal development in the islands’ most likely areas for locating such settlements (i.e., Road Town in Tortola, Figure 4) may preclude such evidence from ever being found. Indeed, at least one report cites possible evidence found of an Archaic or pre-ceramic site consisting of stone flakes and cores (likely Basalt) found at Chalwell on Sage Mountain on Tortola without any associated pottery or other cultural remains except for the presence of whelk (Cittarium pica) shells, possibly modern, which await further investigation (Gross 1976: 236). Alfredo E. Figueredo (personal communication) reports finding “archaic material” atop what appeared to be old cultivated terraces on Sage Mountain during a cursory pedestrian survey. Further, two possible Lithic or Archaic Age biface axes were recovered during excavations in 1997 at Belmont on Tortola and noted to most closely resemble Archaic Age artefacts from Krum Bay (Drewett and Bates 1999: 15; Drewett 2007: 748).
The Saladoid migration

The Saladoid people are believed to have entered the Caribbean around 500 B.C. from the banks of the Orinoco River in northeastern Venezuela (Rouse 1989; Reid 2009: 17) and persisted until about A.D. 600. The highly decorated pottery styles of the Saladoids (white-on-red, red, black and polychrome paint, and zone-incised-crosshatchings or ZIC; Figure 5, Figure 6 and Figure 7) are distinctive and have enabled archaeologists to trace the route of their migration from northeast South America up through the Lesser Antilles all the way to eastern Puerto Rico in the Greater Antilles. They hunted land mammals, fished and collected shellfish while engaging in the cultivation of root crops, especially manioc (also known as cassava). It has been suggested that they did not introduce new crops, but instead made use of those introduced during the Archaic Age by their predecessors (Reid 2009: 20). There is evidence that the Saladoids were artisans with simple technologies widely
available. Wood, stone, bone and shellworking artefacts are common, as is evidence for weaving, pottery making and the trading of exotic or precious stones. Societal groups were believed to be tribally-based, although some sites were thought to house populations in the hundreds over many generations. Villages were usually laid out with middens around a large, cleared plaza area likely used for ritual displays and ceremonial events (Wilson 2007: 92-94). Larger sites may have been regional centers for cultural gatherings and some smaller sites possibly seasonal or hunting camps. Saladoid people were polytheistic adopting numerous South American gods but replacing their symbolic animal representations (i.e., jaguar and caiman) with those locally known in the Caribbean (i.e., dogs, bats, and humans), particularly as adornments on ceramic vessels (Rodriguez 1997: 80-87). It is from the Saladoids that the oft-used but mistaken identity of prehistoric Caribbean inhabitants to be called the “Arawaks” as they likely shared the same ancestry of an Arawakan-speaking people in South America, although the Saladoids were a culturally diverse group distinct from their South American cousins (Reid 2009: 49-76). Numerous sites with Saladoid artefacts have been found throughout the British Virgin Islands, although they are believed to be later in the Saladoid phase (Table 1). Multiple theories have been posited for the routes of Saladoid colonization from South America and their possible interaction with Archaic inhabitants or intra-Caribbean development in the Caribbean as a distinct cultural group (Rouse 1992: 71-104; Wilson 2007: 67-94; Reid 2009: 58-74). A comprehensive understanding of the occupation and use of the geographically centralized British Virgin Islands in the pre-Columbian Caribbean would assist in tracing migration and development of the Saladoid culture in the region.
The Ostionoids

The Ostionoids (ca. 600 – 1500 A.D.) were a uniquely Caribbean cultural group, having developed from their ancestors in the Caribbean and sharing none of the mainland characteristics which signified a new migration (Saunders 2005: 212-213). Comprised of socially complex societies, the Ostionoids are the evolutionary predecessors of the Taíno Indians encountered by Columbus. The origins of the Ostionoids is still a topic for debate with some scholars arguing that all Ostionoids developed from the Saladoids on Puerto...
Rico with possible attributes contributed from Archaic communities in eastern Hispaniola while others believe they evolved from Archaic peoples who had emigrated from Central America into Cuba and Hispaniola (Reid 2009: 58-74). While various theories are postulated, what is clear is that the Ostionoids developed in the Caribbean and were not a subsequent migratory group from the mainland (Saunders 2005: 212-213). They were potters and villagers, had larger and more expansive settlements and established cultural customs and beliefs, which later transmuted into the Taíno systems of religious beliefs and cultural rituals. Ostionian pottery appears less well-made than Saladoid pottery. It’s characterized by black smudging and an orange red slip applied to the entire surface of a thin and hard vessel (known as “redware”) and simple modeling (Saunders 2005: 213). Two important subseries developed in Puerto Rico which appear in the archaeological record in the British Virgin Islands – the Elenan and Chican subseries.

Figure 8. Elenan Ostionoid pottery: a-c from the Santa Elena culture, d from the Monserrate culture (figure after Rouse 1992: 125).
In the Santa Elena period (ca. 850 – 1500 A.D.), pottery consists mainly of bowl forms without painted decoration or polishing, and a loss of strap handles (Figure 8; Rouse 1992: 123-127). Larger Elenan sites are associated with large cleared plazas or ball courts. The Chican subseries (approximately 1200 – 1500 A.D.) began in the Dominican Republic and spread eastward to the Virgin Islands (particularly St. Croix) and the northern Leewards. Chican pottery (Figure 9) is characterized by more highly-polished surfaces, more refined modeled-incisions, and modeled-incised lugs and curvilinear incised designs on bowls with incurving shoulders. The Elenan (Figure 8) and Chican (Figure 9, Figure 10 and Figure 11) styles were in use during roughly the same time period and do not indicate sequential cultural development. Alfredo E. Figueredo has identified a third subseries, “Aklian” or “Gun Creek” consisting of bell-shaped bowls, broad-lipped platters, faint red paint (possible vegetal dye applied after firing) limited to the interior lips of vessels, thumb-impressed rim on a type of vessel approximating a beaker’s configuration, and made of grayish-brown, compact, dense paste generally lacking polish (Figueredo, 1980: 28). These
associations of pottery styles between the different islands show the extensive role of inter-island interaction in the pre-Columbian Caribbean and highlight the importance of improving our understanding of the nature and extent of this interaction in the BVIs.

Figure 10. Chican *zemi* from the Dominican Republic. Courtesy, National Museum of the American Indian, Smithsonian Institution [Cat. No. 5/3753].

Figure 11. Chican Ostionoid purging stick/vomiting spatula from Magen’s Bay, St. Thomas, US Virgin Islands. Courtesy, National Museum of the American Indian, Smithsonian Institution [Cat. No. 6/1374].
CHAPTER 4: GEOLOGY, CLIMATE AND NATURAL RESOURCES OF THE BRITISH VIRGIN ISLANDS

Figure 12. Caribbean Basin. Courtesy, CaribSeek.com (accessed 17 January 2011).

During the late Pleistocene (approximately 18,000 years ago) when sea levels were much lower than present day, the island of Puerto Rico consisted of a huge land mass that encompassed all of the Virgin Islands with the exception of St. Croix (Island Resources Foundation, et al. 2009: 3). When the waters receded, the British Virgin Islands – relic mountaintops lying atop the Puerto Rican Plateau in the Caribbean Sea – were formed (Figure 12 and Figure 13) (Ibid).
With few exceptions, the dominant bedrock geology is volcanic (Ibid. at 4). Soil profiles tend to be very similar throughout the BVIs, with volcanic bedrock being overlaid with a relatively thin layer of soil (thicker in low lying areas) and organic matter on the surface (Ibid.). As the geology throughout the BVIs (with the exception of Anegada) is reasonably uniform, identification of imported lithics will help to identify interaction of the BVIs with other islands in the Antillean archipelago, as reflected by lithic provenience research done by Knippenberg, et al. in the Lesser Antilles (Knippenberg and Gijn 1998; Knippenberg and Zijlstra 2008). Extensive seismic and volcanic activity along with erosional forces have created a rugged topography with steep-sloping terrain (frequently 30% or more) and irregular coastlines on most of the islands in the BVIs (Island Resources Foundation, et al. 2009: 5). Many of the islands have intermittent streams, locally known as “ghuts,” that flow...
during periods of intense rainfall which possibly were running streams in the prehistoric period as historic deforestation in the islands has resulted in more arid conditions (Ibid. at 6-7). There are salt and freshwater ponds on the larger islands, but few or none on the smaller ones.

The BVIs possess a subtropical climate (Island Resources Foundation, et al. 2009: 6-7). They lie within the Trade Wind Climate Zone (Figure 14) with winds coming from east-northeast during December to February (known locally as “the Christmas winds”), easterly winds during the period from March to May, east to southeast during June through August, and mainly east to the southeast for the period from September through November (Ibid.). Squalls are common, particularly during hurricane season (June through November) as the islands lie in the Hurricane Belt (Ibid.). Temperatures vary little during the day, dropping usually about 6 degrees at night. Summer high temperatures average in the 80s Fahrenheit, with winter temperatures averaging in the 70s (Ibid.). Rainfall averages approximately 37” per year, with dry-to-wet areas east to west and south to north, respectively (Ibid.).

Rich in biodiversity, the BVIs of today must appear vastly different than in prehistoric times. Although the island of Tortola does have lush vegetation (particularly around the area of Sage Mountain), many of the island’s ecosystems have been damaged or destroyed by occupation and development, or through the process of erosion. Even in areas not developed, the combination of loose, sandy soils, heavy rainfall and loose goats roaming the islands have resulted in the depletion of natural grasses and ground cover. Nevertheless, areas of forest, shrub, pasture grassland and beach can still be found outside of developed areas.
Offshore, the islands sit on a land bank that extends from the eastern end of Puerto Rico for 144 kilometers in an east-northeasterly direction (Figure 13) (Island Resources Foundation, *et al.* 2009: 48). Anegada lies at the northeastern end of the bank, while the rest of the BVIs lie near the southern edge. During periods of lower sea levels during the late Pleistocene and early Holocene the islands would have been connected by land bridges (*Ibid.*). Today, the waters between the islands rarely are deeper than 50 meters and most are much more shallow (*Ibid.*). Beaches range from fine-grained particles, to rocky gravel, to cobbles and boulders, including giant boulders known as batholiths. Strong underwater currents can produce large ground swell waves up to 5 meters during the winter months.
making the approach to land from the southwest sides of the islands difficult. Coastal and marine habitats consist of beaches (sand, gravel and rocks), mangroves, seagrasses, coral reefs, and sand patches (Ibid. at 50).

It is postulated that, like other Caribbean islands, a wide variety of birds, reptiles, invertebrates, mammals and marine life existed in the BVIs during prehistoric times (cf. Lazell 2005; Island Resources Foundation, et al. 2009: 31). Important food sources would likely have included the Puerto Rican hutia (*Isolobodon portoricensis*), the West Indian Shrew (*Nesophontes*), the Puerto Rican parrot (*Amazona vittata*), the Anegada iguana (*Cyclura pinguis*), and a wide variety of marine animals including the manatee, the Caribbean monk seal, fish, lobsters and turtles. Many of the larger species were extinct or became extinct shortly after the initial period of European contact. As in prehistoric times, shellfish, such as the whelk (*Cittarium pica*) and conch (*Strombus gigas*) continue to be an important part of the diet of BVIslanders.
CHAPTER 5: PREVIOUS ARCHAEOLOGICAL RESEARCH IN THE BRITISH VIRGIN ISLANDS

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700s</td>
<td>•1722: Pere Labat conducts archaeological survey of Anegada.</td>
</tr>
<tr>
<td>1800s</td>
<td>•1832: Field survey of Anegada by Robert H. Schomburgk.</td>
</tr>
<tr>
<td>1900-1969</td>
<td>•1923: Gudmund Hatt conducts archaeological work on Tortola.</td>
</tr>
<tr>
<td></td>
<td>•1930s: Willard V. King collects artefacts from Tortola.</td>
</tr>
<tr>
<td></td>
<td>•1937: Archaeological work on Anegada by Herbert W. Krieger; trial trench on Tortola.</td>
</tr>
<tr>
<td>1970s</td>
<td>•1972-1974: Alfredo Figueredo and Jeffrey Gross of the British Virgin Islands Archaeological Survey conduct preliminary archaeological reconnaissance of many islands in the BVIs, shovel test pits of Tortola and Great Camanoe, and excavations on Virgin Gorda at Gun Creek and Fort Point.</td>
</tr>
<tr>
<td></td>
<td>•1974: Archaeological reconnaissance of Anegada and excavation of shell mound by Alfredo Figueredo and Jeffrey Gross of the British Virgin Islands Archaeological Survey.</td>
</tr>
<tr>
<td></td>
<td>•1987: Elizabeth Righter shovel tests flat area on Guana Island.</td>
</tr>
<tr>
<td>1990s</td>
<td>•1994: Field survey of known and reported (to Virgin Islands Historical Society) prehistoric archaeological sites and coastlines of Tortola by Peter Drewett; excavations conducted at Paraquita Bay, Tortola.</td>
</tr>
<tr>
<td></td>
<td>•1996-1997: Excavations at Belmont, Tortola, by Peter Drewett.</td>
</tr>
<tr>
<td></td>
<td>•1998: Field survey of Jost Van Dyke and western tip of Little Jost Van Dyke by Brian Bates.</td>
</tr>
<tr>
<td>2000s</td>
<td>•2002: Field survey of Anegada by Dave Davis and Kevin Oldfield; excavation of two sites.</td>
</tr>
<tr>
<td></td>
<td>•2003: Excavation of "Anegada I" site (possibly by Kevin Oldfield, though uncertain).</td>
</tr>
<tr>
<td></td>
<td>•2003 - 2008: Excavations on Guana Island by Elizabeth Righter.</td>
</tr>
<tr>
<td></td>
<td>•2007: Continued archaeological investigation at Belmont (with significant excavation) by Peter Drewett.</td>
</tr>
<tr>
<td></td>
<td>•2010: Test pits at cave on Little Jost Van Dyke by Deborah Davis and Anthony Vasquez.</td>
</tr>
</tbody>
</table>

Figure 15. Timeline of archaeological investigation of the pre-Columbian past of the British Virgin Islands.
Although the Virgin Islands are grouped together geographically, when conducting archaeological research they have historically been treated as two separate entities divided along political boundaries. Clearly, this has caused some confusion and disparity in analyzing how prehistoric peoples settled the region (Bates 2001: 10; Johnston and Lundberg 1983: 50). The regulatory measures put in place by the United States government in the 1960s followed by the dramatic expansion in tourism and massive development in the U.S. Virgin Islands has resulted in cultural resource assessments being required with more than 300 archaeological sites now identified. Unfortunately, the situation is nearly the opposite in the British Virgin Islands. While the BVIs have largely remained undeveloped, they are starting to experience an increase in tourism and investment in the islands with a corresponding increase in development activities. What the BVIs lack, however, is any comprehensive governmental policy to identify, preserve or protect its archaeological resources. Little archaeological research (with a few notable exceptions) has taken place in the BVIs (Figure 15). Although there are nearly 70 islands and islets in the BVIs (no accurate count exists), there are fewer than 50 pre-Columbian period sites which have been identified and less than a dozen which have been the subject of any intensive archaeological research beyond pedestrian survey.

A literature review of the published history reveals how little is actually known and popularly understood about the role of the BVIs in prehistory. In 1966, Florence Lewisohn cites, “The only evidence of Indians found on Tortola consists of a few stone axes, so we know that at least they stopped over or hunted here,” but also notes that later explorers near the turn of the 17th century found the Virgin Islands and Tortola in particular “wholly
uninhabited” (Lewisohn 1966: 5-8). In “A Concise History of the British Virgin Islands,” Vernon Pickering dedicated 4 of its 160 pages to a detailed description of the “Arawak” culture (Pickering 1987: 6-9). Pickering references archaeological surveys revealing Arawakan presence in Virgin Gorda, Anegada, Beef Island, Great Camanoe, Tortola and Guana Island though he doesn’t cite his sources for the referenced surveys (Pickering 1987: 6). Isaac Dookhan’s “A History of the British Virgin Islands” covers the period from 1672 to 1970, and makes only a passing reference to the islands being discovered by Christopher Columbus in 1493 and remaining “unsettled” until the mid-17th century (Dookhan 1975: Preface). Although Dookhan’s “History of the Virgin Islands of the United States” first published in 1974 dedicates an entire chapter to the “Pre-Columbian Inhabitants” of the Virgin Islands, it’s entirely based on research undertaken in the U.S. Virgin Islands and elsewhere outside the BVIs (Dookhan 1994: 15-30). Kenneth Bain mentions “Taino Carib” in his recent book on living in the BVIs, but his reference concerns a fiber-optic cable link with the U.S. Virgin Islands and Puerto Rico, saying it was named “after the warlike Indian tribe which dominated the islands in the fifteenth century” (Bain 2002: 80). Taken together, the published histories barely touch upon the rich archaeological past of the prehistoric inhabitants of the BVIs, and when they do the information is usually attributed to sources from the U.S. Virgin Islands or is generally inaccurate.

From a different scientific discipline, there is reference to prehistoric materials found on Guana Island in a comprehensive study spanning more than three decades of the present-day ecology and biodiversity of Guana Island conducted by Dr. James D. Lazell (2005). Dr. Lazell had access to reports of archaeological investigations conducted on the island by Elizabeth Righter from 1987 (discussed below), and one by Michael Gibbons of the University of Massachusetts dated 20 December 1986. According to Lazell, Gibbons
excavated a cave floor and found archaic artefacts (a polished stone axe) and a chert arrowhead believed to have been imported to the island (Lazell 2005: 314, citing Gibbons’s 1986 report). Righter’s excavations on the island conducted over several field seasons from 1987 through 2008 found a multiplicity of cultural materials, evidence of habitation, an *in situ* burial and an almost entirely intact Taíno bowl (found near the burial) estimated to date ca. A.D. 900 – 1400 (Righter 1987, 2007a, 2007b, and 2008), hinting at the use and settlement of the island during the transitional period from the Elenan Ostionoid through to the Chican Ostionoid (Taíno) culture. The Conservation Agency, a non-profit organization directed by Lazell, continues to study the biodiversity of Guana Island, and has made copies of archaeological reports for investigations conducted on Guana Island (including those by Righter and Gibbons) available online at www.guanascience.com.

A review of existing material culture included a review of the artefacts on display at the Virgin Islands Folk Museum located in Tortola. The museum houses some interesting artefacts (many from elsewhere in the Caribbean or South America), but again repeats inaccurate and outdated information in its displays concerning the prehistoric occupation of the BVIs (Figure 16; all photos by the author unless otherwise noted). The museum comprises two rooms of a former shipwright’s home with one room dedicated to the timeline history of the BVIs. Museum literature and displays reference the settlement of the Virgin Islands by indigenous Amerindians (referred to as “Arawaks”) around 100 B.C.E., though no reference for this claim is cited (Figure 17).
Welcome to the VI Folk Museum.

We offer an overview of the history and culture of the Virgin Islands from arrival of the indigenous Amerindians in 100 B.C.E., through the succession of the Africans, Europeans, return of the Africans during the Slave Trade, Plantation Life and the Abolition of Slavery in 1834.

Life post 1834 is also presented through the arts and crafts of Virgin Islanders who displayed indomitable spirit to survive through what is called "The Survival Years." Their creativity is still evident in the work of today's artists and artisans.

Our aim is to explore, document, preserve and interpret our Virgin Islands heritage, and to exhibit this heritage for the study, education and enjoyment of all.
The best and most recent synopsis of archaeological work performed in the British Virgin Islands was published in 1974 by Alfredo E. Figueredo (Figueredo 1974b). It sets forth an historical account of the archaeological research conducted in the Virgin Islands from the earliest references in the sixteenth century through the date of publication. Excluding the work conducted in the U.S. Virgin Islands from the present discussion, Figueredo notes the earliest references to archaeological reconnaissance on the island of Anegada by Pere Labat in 1722, who remarked upon the great conch shell helps found, and Robert H. Schomburgk, who in 1832 conducted a detailed survey of the island and commented on the conch shell mounds (Figueredo 1974: 1). Figueredo also notes Gudmund Hatt worked in Tortola in 1923, and explains Hatt’s division of the Virgin Islands prehistory into three periods based on sites from the U.S. Virgin Islands. Interestingly, Figueredo also reviewed unpublished works, and is the only source to advise of the work of Willard V. King, a trustee of the National Museum of the American Indian, Heye Foundation, under the auspices of an archaeological expedition to St. Croix under Lewis J. Korn, whereby a few unspecified artefacts from Tortola were collected (and now housed at the National Museum of the American Indian). Figueredo continues to trace the prehistory of the BVIs through the work of Herbert W. Krieger of the Smithsonian Institution who was sent to Anegada to verify reports of the large conch shell mounds, though he sharply criticizes Krieger’s field techniques and conclusions (Figueredo 1974: 3). Figueredo concludes his summary with his own work with the British Virgin Islands Archaeological Survey (BVIAS) established by the National Museum of the American Indian and Heye Foundation. The BVIAS undertook preliminary archaeological reconnaissance of many islands in the BVIs, putting in test pits on Tortola and Great Camanoe, and conducted surveys and excavations during 1972, 1973 and 1974, working particularly on the island of
Virgin Gorda and surveying the conch shell middens on Anegada. Unfortunately, that is where Figueredo’s excellent summary of the archaeological research into the prehistory of the BVIs ends.

Since that time, no similar comprehensive review of the archaeological research of the BVIs has been published. Undoubtedly other archaeological projects have taken place, though the results remain unpublished or exist in the realm of “gray literature” with limited accessibility and being generally unavailable. In order to comparatively review the material culture and settlement patterns of the BVIs with other islands in the Great and Lesser Antilles, it is first necessary to have an understanding of the previous research findings of prehistoric sites in the BVIs. What follows is an island-by-island summary of major excavations and archaeological reconnaissance of the BVIs, and a summary of the author’s own work on the island of Little Jost Van Dyke as well as her review of an unprovenanced ceramic collection from the island of Anegada from 2003 held by the British Virgin Islands National Parks Trust.

Tortola

The earliest archaeological work on Tortola may have been the trial trench of an “Indian midden” to the east of Road Town done in 1937 by the Smithsonian Institution (Krieger 1938: 98). Krieger notes “striking” results “in that the cultural objects obtained were practically identical with material collected by previous Smithsonian expeditions from Arawak village sites in Santo Domingo [Hispaniola], thus contrasting markedly with material to be later excavated at St. Croix and St. Thomas” (Krieger 1938: 98-100). Based on these results, Krieger places the Road Town site as “one of the older in the aboriginal cultural sequence of the Virgin Islands” (Krieger 1938: 100). Results of his excavation do
not appear to have been published and no follow up work done on the site. However, Alfredo E. Figueredo is familiar with the reported site and has viewed artefacts collected from the site now held at the Smithsonian Institution and reports they appeared to be of the Chican Ostionoid series (Alfredo E. Figueredo, personal communication). Road Town is now extensively developed (see Figure 4) and it is likely that all evidence of prehistoric occupation has been lost. In his field survey of Tortola in 1994, Peter Drewett was unable to locate the site known to have been located there (Drewett 2000: 114).

Further survey investigations were undertaken by Elizabeth Righter on Tortola, including sites at Cane Garden Bay and Belmont, and Guana Island (discussed below, Righter 1987, 2007a and b) as mentioned in Brian Bates’s unpublished doctoral dissertation review of archaeological sites on Tortola and Jost Van Dyke (2001). The report of Righter’s field work at Cane Garden Bay is not readily accessible nor discussed by Bates (2001: 11). Bates does, however, describe Righter’s work at Belmont in some detail (Bates 2001: 155-156).

As set out above, Alfredo E. Figueredo did a cursory survey of Tortola (including a shovel test pit at Cane Garden Bay) and found evidence of possible Archaic Age inhabitants on Sage Mountain, though no further investigation was done thereafter and the results of his field survey were not published (Alfredo E. Figueredo, personal communication).
Of thirty-three known or reported prehistoric archaeological sites on Tortola (Figure 18), only two sites – Belmont and Paraquita Bay – have undergone excavation with published results (Drewett 2000: 114). Drewett was able to locate 21 of the known or reported sites during his 1994 field survey though that survey was significantly limited by lack of accessibility in large parts of the island (the eastern half of the northern coast being difficult to access by land due to steep slopes and thick vegetation forcing approach from the sea) or recent development (Drewett 2000: 114; Bates 2001: 132). According to Drewett, nearly all the ceramics found during surface survey were of the late Ostionoid except for the sites

Figure 18. Prehistoric sites known or reported on Tortola (sites with * preceding the name were reported, but unable to be located). Major sites are circled red (after Drewett 2000: 114).
of Cane Garden Bay and Josiah’s Bay, which likely were later Saladoid tradition being red painted ware. Drewett divides the sites into major (probably long-lived and permanent or semi-permanent) settlements and minor (i.e., camp sites) settlements (Drewett 2000: 114). Five major sites are noted by Drewett along the northern shores of Tortola (Figure 18) (Drewett 2000: 114). Two sites on the southern side of the island are posited as being possibly major sites, but lost to recent disturbance and development (Drewett 2000: 114). Drewett concludes the southern coastal bays would have been difficult to access as they would have been mangrove swamps, and therefore the more sheltered bays of the northern coast were more hospitable to access (Drewett 2000: 114).

Drewett and Bates conducted extensive excavations at Belmont Bay (Figure 19) at the west end of Tortola, in the shadow of Belmont Hill (Figure 20), for a number of years from 1996. Excavation of approximately 1,000 square meters covered approximately 25% of the site (Drewett 2007: 748). Artefacts recovered are mainly classified as Elenan Ostionoid, although some late-Saladoid traits were recorded (Drewett 2000: 132; Bates 2001: 139). Described as a major site of long-term settlement, excavations at Belmont reviewed pit and
post features indicating roundhouses erected at the site, a stone-lined ball court, and areas of possible ceremonial activities related to the summer solstice (Drewett 2000, 2003, 2007). Four crouched burials were found in what appeared to be the central plaza area cleared for the ball court to the east of the roundhouses (Drewett 2007: 749). Questions remain as to whether the burials were associated with the settlement or the ball court phase (Ibid.). If of the later phase, two burials would be inside the perimeter of the ball court and two outside (Ibid.). The remains were believed to be that of children or young adults, although cultivation and land crab activity had compromised their preservation. No grave goods were recovered. (Ibid.) Evidence of feasting was found in middens around the ball court (Drewett 2007: 749).

Figure 20. Belmont Hill viewed from the southwest side. Belmont Pond is visible to the right of the hill, with the Belmont Bay site behind the pond.
Drewett remarked that from a standpoint between two standing stones on Midsummer’s Day “the sun appears to hover directly above Belmont Hill and then vanishes beneath its conical tip plunging the village site into shadow while the sea to the north and the mountain to the south is still in bright sunlight” (Figure 21) (Drewett 2000: 170). Drewett posits the Taíno cohoba ceremony could have been adapted for use at Belmont to enhance the power of the local shaman (Drewett 2000: 170). The ball court is believed to be the easternmost in the Caribbean, and its central placement between St. Thomas (near another Taíno ball court located on St. Croix to the south) and Virgin Gorda (where further evidence of prehistoric occupation has been found as set out below) may be significant (Figure 22) (Drewett 2007; see also Alegria 1983: 119-122).
Cultural artefacts recovered at Belmont during shovel tests conducted by Righter in 1990 included prehistoric material and certain items of note: a large whole bowl, two *zemis* (one of grey quartz and one of shell), a shell axe and roughout, and part of a body-stamp (Bates 2001: 156). Subsequent excavations by Drewett and Bates in 1997 revealed a substantial spread of pottery sherds and shellfish refuse, two standing stones - one with a petroglyph of the sun (Figure 23) - aligned 30 degrees from magnetic north and directly toward Belmont Hill, a shell vomit spatula, and a triton shell with detached apex forming a trumpet. Near the standing stones they recovered a small complete pot and large pieces of others. Beside the pot were broken whelk (*Cittarium pica*) shells and two beach pebble pounders.
A large posthole contained two diorite (locally available) beads and bones including snake, jack, grunt and ray. Further excavations revealed another whole pot with sherd lid beside what may have been a symbolic stone axe that had been deliberately deposited. A similar axe was found in a shallow pit nearby. When viewed from the top, the “axes” are only 1 cm thick, so unlikely they were used for practical purposes but were instead ritual or ceremonial deposits. Drewett and Bates posit that these ceremonial axes are similar in form to the ‘ovate blanks’ at the pre-ceramic Krum Bay site (Bates 2001: 159). Radiocarbon samples were sent for testing, but were unfortunately destroyed in a laboratory accident (Bates 2001: 160).

In all, more than 35,000 pottery sherds were recovered during the 1996, 1997 and subsequent field seasons at Belmont with the vast majority made of locally available materials (Bates 2001: 162; Drewett 2007: 748). For the most part, the pottery displayed Ostionoid characteristics with some painting, which Lys Drewett asserts indicates “a continuity of Saladoid traits” (Drewett 2000: 132). A wide spectrum of vessel forms were found, though few were decorated, indicating the pots were utilitarian wares used for food storage, preparation, cooking and serving dishes (Drewett 2007: 748). Where present,
decoration consisted of incised horizontal or vertical lines and grooves or a curvilinear pattern. Zoomorphic and anthropomorphic lugs and adornos applied to the ceramics were also found (Drewett 2007: 748). Lys Drewett infers Belmont had a well-developed cotton industry from the presence of 30 spindle whorls (some made from pieces of broken pot and some finely crafted) recovered at the site (Bates 2001: 162; Drewett 2007: 748). Ethnohistorical sources attest to the widespread use of wild cotton used to make fishing nets, hammocks, decorative belts and bands, clothing and other items (Olazagasti 1997: 135-137; Saunders 2005: 271-290). Presence of dozens of spindle whorls used to weave cotton evidences the settlement at Belmont had developed the technology required to manufacture such woven items as part of their economy. Based on the analysis of the ceramic assemblage recovered during the 1996-1997 field seasons at Belmont, Drewett assigns a broad Elenan Ostionoid (900 – 1200 A.D.) date for occupation, although there were a few earlier and later artefacts recovered (Drewett 2000: 132).

Although minimal when compared to the ceramics recovered at Belmont, a detailed analysis of the lithic artefacts demonstrated a potentially sophisticated method of tool production hampered by the crudeness of the locally available materials (Drewett 2000: 133-139; Bates 2001: 163-164). All stone was systematically collected and reviewed for analysis (Drewett 2007: 748). Large amounts of lithic debris and suggest stone work carried out on site (Bates 2001: 164) with 82% of stone collected showing marks of modification including flaking and polishing (Drewett 2007: 748). Minimal reworking of artefacts led to speculation that there was a marked preference for flake tools rather than retouched ones (Bates 2001: 164). Shell tools were recovered, but the small quantity of modified shell led Drewett to conclude they were of limited use (Drewett 2000: 139).
Analysis of the faunal assemblage from Belmont conducted by Dr. Elizabeth Wing of the University of Florida Museum of Natural History revealed differences between the deposits at the settlement over time and between Tortola and other islands in the Caribbean (Drewett 2000: 153). During the Saladoid period, the diet of the inhabitants consisted of almost equal or equal use of the fish and non-molluscan invertebrates from reefs and inshore waters (Drewett 2000: 152). Off-shore pelagic species requiring a sophisticated fishing technology and the usage of boats were not targeted. Later deposits do indicate a shift toward pelagic fish, reef fish (such as parrotfish), and a decline in the quantity of reef carnivores, possibly indicating an over-fishing of inshore waters (Bates 2001: 166-167).

Drewett published preliminary findings of his work at Belmont (and Paraquita Bay, infra) in 2000 in a composite review of his fieldwork in Barbados, Tortola and the Cayman Islands (Drewett 2000), followed by an update on more recent work in an article in *World Archaeology* in 2003 and two papers presented to an international conference of Caribbean scholars (Drewett and Bates 1999; Drewett 2007). In his doctoral dissertation, Bates repeats and supplements Drewett’s findings (Drewett 2000) and adds reports of his own fieldwork on the island of Jost Van Dyke in a comparison of settlement patterns in the Virgin Islands (US and two of the British Virgin Islands) (Bates 2001). Although informal review of the local press and publicly available information on the web indicates Drewett and Bates have since continued their excavations at Belmont (British Virgin Islands Heritage Conservation Group 2007, citing Colli 2007), neither has published a report of their more recent excavations (cf. Drewett 2007). The author requested permission to view the Belmont collections housed at the local community college while on Tortola, but was
not granted permission though Peter Drewett kindly offered to answer any questions related to his research at Belmont (Peter Drewett, personal communication).

As of 2008, Belmont is a terrestrial protected area under the current protection plan in place in the BVIs under the management of the National Parks Trust (Gardner 2007: 48). The author visited the site at Belmont in the summer of 2010 to find it completely overgrown with dense vegetation and nearly impossible to conduct any pedestrian survey. She also was unable to relocate the two standing stones aligned with Belmont Hill recorded by Drewett and Bates.

Drewett and Bates also conducted limited test pit excavations at Paraquita Bay on Tortola’s southeastern coast (Figure 24). They found evidence of a small area of activity along a former mangrove swamp edge and around the banks of a seasonal spring “ghut” (Bates 2001: 151). In the base of one test pit, a large number and wide variety of faunal remains were found that seemed unlikely to have occurred through regular deposits over time. The pit contained bones and shells of animals representing the land, sky and sea, and evidence of burning though no burning residue was evident in the pit itself (Bates 2001: 151). During the excavations, a local resident showed them a fine-eared axe and polished pounder found nearby at Whelk Point (see Figure 24) during construction of his house and which may have been associated with human remains found at the same time (Bates 2001: 151). Based on these findings, Drewett and Bates posit that the site at Paraquita Bay was a temporary or seasonal camp used during the rainy season when the waters would flow in the ghut, and that the careful deposition of the faunal remains in the pit may have been a ceremonial or ritual offering related to the supply of the fresh water (Bates 2001: 151).
Figure 24. Paraquita Bay site test pit area (crosshatched and numbered "2") with red star denoting approximate area of pit with possible ritual deposits (figure after Drewett 2000: 115).

Figure 25. Virgin Gorda, BVI. Courtesy, Google Earth.
Virgin Gorda

To the northeast of Tortola lies the island of Virgin Gorda (Figure 25), discovered by Columbus in 1493. Virgin Gorda is the easternmost island in the Virgin Islands Group, slightly more than 8 square miles rising to a peak at 1369 feet above mean sea level.

In 1973, the British Virgin Islands Archaeological Survey led by Alfredo E. Figueredo discovered a small midden – likely the debris of a single household – on the southern slope of Gun Creek ghut which flows (during rainy seasons) into the Gun Creek Estuary (see Figure 25) (Figueredo 1980: 27-28). Efforts to locate the remains of the house building were unsuccessful as modern construction upslope from the site may have destroyed any evidence of structural features. Figueredo posits the ceramic assemblage appears to be the work of a single potter due to the homogeneity of artefacts from the midden (less than two feet in depth generally) *(Ibid.)*. Figueredo defines this style as “Gun Creek,” being a late Saladoid style on the way to transformation into an Ostionoid style during the 5th to 6th centuries A.D. (Figueredo 1980: 28). Vessel forms consisted of bell-shaped bowls and broad-lipped platters. Constructed of a grayish-brown paste, compact and dense in form, the pottery lacks a high polish and paint is limited to a “fugitive red” applied to the interior rims of vessels. Figueredo postulates this paint may be a vegetal dye applied after firing as the paint rubs or washes off easily *(Ibid.)*. A distinctive analytical mode feature of the collection is a thumb-impressed rim on a beaker-shaped utilitarian vessel (Figure 26) which corresponds directly with the late Saladoid complex. Spindle whorls (Figure 27) were among the artefacts recovered as Figueredo reports finding a number of “fragmented discoidal objects, ground out of pottery walls and perforated more or less centrally” *(Ibid.)*. Figueredo suggests this may evidence textile manufacture on site (and notes that
neighboring lands in more modern times did have fine fields of cotton) (Ibid.). Similar clay spindle whorls were also found by Figueredo in 1972 at the Fort Point site (Figure 29) near the southern tip of Virgin Gorda although they were of a later Chicoid style (Figure 28), which may evidence a continuing tradition of textile manufacture on the island (Figueredo 1972: 135, 1974a: 3-4). Based on the evidence gathered from the Gun Creek and Fort Point sites, there is evidence of steady development of the Amerindian population of Virgin Gorda transitioning between the Saladoid through the final Taíno Chicoid cultural complexes that should be explored as an avenue for future research.

Figure 26. Thumb-impressed beaker rim fragment of utilitarian ware (drawing by Jeffrey M. Gross from Figueredo 1980: 30).

Figure 27. Discoidal fragment from Gun Creek (drawing by Jeffrey M. Gross from Figueredo 1980:28).

Figure 28. Spindle whorl from Fort Point (drawing by Jeffrey M. Gross from Figueredo 1978: back cover).
Figure 29. Fort Point site (denoted by yellow star) near the southern tip of Virgin Gorda (scale 1:25,000).

Jost Van Dyke

In 1998, the island of Jost Van Dyke was surveyed (and shovel-tested) by Dr. Brian Bates and a team of students from Longwood College. “Stratum 1” (Figure 30) of their survey consisted of fieldwalking and shovel test pits of reported or likely sites around the coastal perimeter of the island (Bates 2001: 168-188). Trial trenches bisecting the two geological formations (roughly the northern and southern halves of the island) were planned for “Stratum 2” (Figure 31) but were later abandoned due to the rough terrain, dense vegetation and steep slopes rendering them impossible to implement (Bates 2001: 182). A
meandering fieldwalking survey along the road and ridge lines forming the backbone of the island was conducted as “Stratum 2” (Figure 31) instead (Bates 2001: 181-184).

Figure 30. Survey of "Stratum 1" areas of Jost Van Dyke (figure from Bates 2001: 180).

Figure 31. "Stratum 2" areas (planned and actual) (figure from Bates 2001: 184).
Of the 11 locations where shovel test pits were placed (one site shown in Figure 30 is actually on the island of Little Jost Van Dyke, discussed *infra*), very few artefacts were found with the exception of the Cape Wright site (Bates 2001: 188). Two badly eroded prehistoric sherds were found at White Bay-Sandcastle (Bates 2001: 189-192) which were thought to possibly indicate subsurface deposits, and one surface find of a sherd of Elenan Ostionoid pottery at Abe’s-Little Harbour (Bates 2001: 199-201) which proved to be of little assistance in determining the placement of shovel test pits (Bates 2001: 210). Subsequent test units placed at White Bay-Sandcastle recovered no further artefacts (*Ibid*). However, a significant amount of prehistoric debris was found on the surface and in test pits at Cape Wright, and recovered from the surface of the hillside and bluff overlooking the site. The survey of Stratum 2 revealed no evidence of prehistoric occupation (*Ibid*).

Further investigation of the Cape Wright site (Figure 32) was conducted in 1998 and 1999 by Bates (Bates 2001: 214-281). A total of nine test units (1m x 1m) were put in and all
produced artefacts with the exception of test unit E at the north end of the units placed along the hillside (Figure 33).

Test unit B contained buried human remains of three individuals (Figure 34). Two were buried in a flexed or semi-flexed position, one likely of an adult male. The only grave good found was a calcite bead likely from a necklace found with the remains of the adult male approximately 30 cm below the surface. The other bones were too badly degraded to postulate the sex or age. Elenan Ostionoid ceramics were found in the stratigraphic layers with the buried remains. The third interment was at a deeper context but the remains were badly decayed and continued outside the unit, which was not extended. Six sherds of pottery were also found in that context level. Test unit C also contained human remains consisting of a badly eroded radius and ulna, along with a quarter of a shallow ceramic bowl. Again, the unit was not expanded due to the poor preservation of the bones uncovered.

Figure 34. Plan of test unit B as extended (figure from Bates 2001: 219).
Test unit G proved to be a shell midden having significantly larger quantities of artefact counts compared to the other units. Charcoal recovered from the unit allowed for radiocarbon dating with dates ranging from 1030 ± 40 BP (Cal. AD 965 – 1040) at a depth of 35 cm and 1350 ± 40 BP (Cal. AD 635 – 720 and Cal. AD 745 – 760) at a depth of 135 cm (Bates 2001: 222-224). Test unit H contained two ceramic vessels that were “Elenan-like” but noted as having “Saladoid qualities” and being neither fine nor crude (Bates 2001: 225). A carved shell in the shape of an equilateral triangle (measuring 4 cm from point to point) with a 5 mm indentation carved in the center was also recovered. Bates posits this artefact to be an eye from a wooden statue, possibly once inlaid with gold (Bates 2001: 225), though the triangular form certainly resembles the traditional three-pointer shape. A nearly complete boat-shaped Elenan Ostionoid pot was recovered with a dense concentration of fish bones and shellfish inside. However, analysis by Elizabeth Wing failed to detect anything suggestive that this pot was an offering despite its contents and having been buried upside down (Bates 2001: 226).

The ceramic assemblage recovered at Cape Wright was examined by Lys Drewett (Bates 2001: 229-260). Although nearly all test units produced pottery, only unit G held enough ceramic artefacts to constitute a sample size large enough from which to infer quantitative differences between stratigraphic contexts (L. Drewett in Bates 2001: 244). One discernable difference was noted: sherds in the higher layer (G1) had more plain bowl, concavo-convex and in-curving bowl forms while a deeper layer (G10) had more platter and shallow open forms (L. Drewett in Bates 2001: 244). No classic early Cedrosian Saladoid characteristics were noted among the ceramic artefacts. However, fine-walled well-made and high fired pottery with red slip all over one surface or used in resist designs (generally on the interior surface of platters or bowls) – traits common to pottery of the
Late Saladoid – were present. Red-slipped well-made platters with triangular-section rims in the higher context (G1) were thicker than those in deeper layers (G10) and could be construed as possibly evidencing late Saladoid traits appearing in Ostionoid vessels. Lys Drewett suggests a further indication of Cape Wright being occupied during this transitional phase arises from the minimal amount of decorated pottery recovered and the presence of multi-coiled loop handle features characteristic of Elenan Ostionoid pottery similar in style to that found at the Belmont Bay site on Tortola (discussed supra) (L. Drewett in Bates 2001: 244-245). The styles of the ceramic assemblage found in test unit G are consistent with the radiocarbon dates further supporting the argument for a late Saladoid through Elenan Ostionoid occupation.

The author understands that additional work at the Cape Wright site on Jost Van Dyke has taken place under Bates’s direction in 2002, 2004, 2005, and 2007, but no results have been published (Brian Bates, personal communication). Bates has indicated he intends to return to the Cape Wright site for an additional field season in 2011 (Brian Bates, personal communication).

Little Jost Van Dyke

Located to the east of Jost Van Dyke and accessible by walking across a sand bar at low tide, the islet of Little Jost Van Dyke has only recently been determined to have prehistoric artefacts. Occupied for much of the historical period until recent times, the area is known for the ruins of the “Lettsom Settlement” and the former home of a local brothel (John Chenowith, personal communication), development which has disturbed much of the western end of the island. As part of his field survey of Jost Van Dyke, Brian Bates crossed over to Little Jost and undertook a controlled pedestrian survey of the western end and the
Lettsom Settlement area (Bates 2001: 207). He reports finding Elenan and Chican Ostionoid pottery on the surface, although shovel test pits in the area failed to produce positive results (Ibid.). On this basis, Bates proposes that Little Jost Van Dyke was a temporary campsite related to the activities at Cape Wright (Ibid.). However, given that one of the most propitious areas for settlement on the island was the area of the Lettsom Settlement, it may be that evidence of prehistoric settlement of a more permanent nature was lost to development in historic times (or that the eastern end of the island, not subjected to development nor systematically surveyed, may hold evidence of pre-Columbian occupation).

Archaeological research has been carried out on the historical site of the Lettsom Settlement by John Chenowith, a PhD candidate at the University of Berkeley during 2008, 2009 and 2010. In 2008, Chenowith and a group of students from Berkeley undertook a systematic pedestrian survey of the western quarter of the island. Six sherds of “possibly indigenous pottery” were recovered, though he does not note specifically where nor provide photos in his report of preliminary findings (Chenowith, 2008: 25). Chenowith’s report of the 2009 field season does not mention any possible prehistoric pottery being found during excavations (Chenowith 2009).

The author took part in Chenowith’s final field season at Little Jost, and while on an informal “site tour” of the island given by Chenowith did find (but not collect) several pieces of prehistoric pottery, including one griddle fragment, at a rock shelter (“cave”) (Figure 35) (formed by a fallen boulder resting on others, Figure 36) location on the northwestern coast approximately 20 meters uphill from the beach. The sherds were later displaced and lost either during a tropical storm or possibly taken by tourists (the island
and the “cave” site are easily accessible by boat), however the author was able to photograph them at the location prior to their disappearance (Figure 37a and b).

Figure 35. Cave site on Little Jost Van Dyke.

Figure 36. Interior of cave site on Little Jost Van Dyke.
Several sherds of what appeared to be prehistoric ceramics were found during test pit excavations at the “house” site of the Lettsom Settlement, although these may have been ‘colonowares’ made by the slaves owned by the Lettsom family during the period of historical occupation as they are easily mistaken for prehistoric pottery and have been found on nearby Guana Island (Kostro 2003: 3; cf. Johnston and Lundberg 1985: 51; Loftfield 2001: 229). Further research and analysis is needed to establish accurate classification. Anthony Vasquez, a graduate student at the University of Berkeley, pointed out a lithic artefact made of very dark black flint (chert) which appeared to have signs of working (Anthony Vasquez, personal communication) and is not locally sourced on the island (Earle 1924; Island Resources Foundation, et al. 2009: 3-4).

Figure 37a and b. Prehistoric pottery sherds (two views) found outside cave site on Little Jost Van Dyke.

At the conclusion of the field season in the final days, Chenowith allowed the author to put in two 50cm x 50 cm test pits in the “cave” site. The first test pit suggested by Chenowith was located immediately inside the southwestern entrance to the cave. As expected, modern disturbance by partiers (evidenced by the number of modern bottles and plastic rubbish inside the cave) and the excrement deposits of the numerous goats resident on the
island (who wisely shelter in the cave during tropical squalls as witnessed by the author) comprised the entirety of the surface and much of the first 10 cm level. The unit was excavated down to bedrock (approximately 30 cm below the surface). No artefacts were recovered.

The second test pit was put in outside the cave entrance near where the author had seen the prehistoric sherds in a terrace-like area bounded by large stones and boulders. The author uncovered four sherds of prehistoric pottery (Figure 38) at an approximately 10-20 cm level placed within 10 cm of a large stone, three pieces of which mended to form the side of a vessel (with a small vertical incision where two sherds joined) though the precise form was not able to be determined. Based on review of photographs provided by the author, Alfredo E. Figueredo suggests the pottery appears to be of the Ostionoid (or late Ostionoid) series (Alfredo E. Figueredo, personal communication). Further analysis is merited to classify the ceramic pieces.
Notably, the area adjacent to the cave appeared to be a series of dry stone and leveled terraces leading down the slope from the hill above the cave to the beach below (Figure 39). This may have been a small ceremonial space or enclosure (Alfredo E. Figueredo, personal communication) and is worthy of further investigation, particularly as it may relate to the established site of Cape Wright just across the water (and accessible by foot during low tide; possibly a land bridge during prehistoric times) (Figure 41 and Figure 42).

Anthony Vasquez noted markings on a boulder on a middle-terrace level immediately adjacent to the cave unlike anything else in the area which might indicate evidence of tool making (the author has seen similar markings where stone axes were sharpened at prehistoric sites in the United Kingdom), although they could have been formed by natural processes of weathering and erosion. Vasquez also pointed out what appeared to be a small “shelf” that had been cut into the rock outside the entrance to the cave about 1.5 meters above the surface level (Figure 43). Again, further investigation is needed to fully
understand the usage and occupation of the cave site although these preliminary findings hint at a ceremonial or ritual use of the site in prehistoric times.

Figure 41. Looking across the ecotone toward the Cape Wright site.

Figure 42. Aerial view of the ecotone between Jost Van Dyke and Little Jost Van Dyke. Courtesy, Google Earth.
Figure 43. Shelf-like feature cut into boulder outside cave entrance on Little Jost Van Dyke.

Guana Island

Guana Island (Figure 44) lies directly north of Tortola’s east end and to the west of Great Camanoe. It is a small (approximately 800 acres) and hilly island that is privately-owned and largely undeveloped. Until their value was recognized in the mid-1980s, local inhabitants who discovered prehistoric pottery would display it for guests (Righter 2007a: 807; Lazell 2005).

A scientist conducting biological research on the island, Michael Gibbons, found evidence of possible occupation, including a chert arrowhead, at cave sites on the island (Righter 2007a: 807). Gibbons, a non-specialist, excavated a cave floor finding charcoal and a stone axehead dated ca. 50 B.C. – A.D. 450 (Lazell 2005: 314), though his radiocarbon dates may admittedly be off by as much as 30% (Gibbons 1987: 21). Gibbons interpreted the cultural
materials recovered to date from the Archaic period between 0 and A. D. 500 and faunal remains of a “primitive barbecue” to ca. A.D. 450, but did not consider the material as evidence of Saladoid occupation (Righter 2007a: 807; Gibbons 1987: 21; Pickering 1986). As there are no sources of chert on the island, the arrowhead represents evidence of trade or import to the island from elsewhere in the Caribbean, possibly from Puerto Rico or Antigua (Knippenberg 2007; Knippenberg and Ziljlstra 2008).

Lazell notes that the cave floors on the island generally have smooth, earthen floors rather than the boulder debris expected based on the geology of the island, and posits that perhaps early inhabitants of the island cleared the cave floors (Lazell 2005: 105). However, taphonomic changes resulting from animals kept at the site (i.e., sheep), historical use of the site (Gibbons 1986: 5), and environmental factors would first need to be considered in connection with any analysis as to the creation of the cleared, earthen floors. Notwithstanding these factors, their presence on Guana does raise interesting questions as the Taíno culture used caves as sanctuaries for ceremonial rites seeing them as portals to the underworld and the animals who inhabited the caves as living with the ancestors (Keegan and Carlson 2008: 94-99). Were the caves on Guana used for ritual offerings, as places of burial, or special ceremonies for communing with the ancestors as they have been elsewhere in the Caribbean (Ibid.)? Are there any petroglyphs with Taíno symbolism as found in caves on Hispaniola and the Turks and Caicos (Ibid.)? These research questions clearly require additional fieldwork on Guana Island and more carefully planned archaeological survey and excavation of these previously identified sites.
Elizabeth Righter and Elaine Acevado shovel-tested the Whites Bay flat area (Figure 44) and found a substantial amount of prehistoric material (Righter 2007a: 807). Verbal reports of monk seal, fish and turtle bones had been reported, but vandalism at Harvard University (where the faunal material had been sent) precluded any further analysis (Ibid.). In 2003, a prehistoric midden identified based on surface finds was found in a former garden area. The area had been cleared and scraped to a depth of approximately 20 cm. Righter and others excavated about two cubic meters of the midden. The midden depth varied from 38 to 43 cm, but was excavated in 10 cm increments as the dark soils (likely caused by regular flooding or crab activity as suggested by the faunal record) prevented visible discernment of stratigraphic layers.
The midden was comprised of primarily food remains and utilitarian items, including poorly crafted ceramics and one Monserrate sherd (Righter 2007a: 807). Cultural materials of status or possible ceremonial significance were recovered, including one Oliva bead, *Strombus gigas* whorl tips that may have been crude forms of *zemis*, small celts crafted from *Strombus gigas* shells, and fragments of ball belts or stone collars which may have related to the Taíno ball game though of an earlier date ([Ibid.](#)). Faunal remains included 416 shells mostly made up of *Cittarium pica* (38%, some altered), *Codakia orbicularis* (4%), and juvenile *Strombus gigas* (2.4%). Hermit crab claws were found, but remains of blue land crab (*Cardisoma guanhumi*) otherwise common in the BVIs were absent ([Ibid.](#)). Fish remains were found in all units at all levels. Hutia and a small amount of sea turtle and iguana were also present. Bird bones included booby, Audubon’s shearwater, white-cheeked pintail and dove. Subsequent excavations in 2006 revealed a posthole feature, though other postholes could not be located and thus the posthole could not be linked to any type of structure or function (Righter 2007b: 122).

Although no radiocarbon dates for the site were obtained, Righter posited a small settlement existed in the post-Saladoid (ca. 850 A.D.) through the Ostionoid (ca.1200 A.D.), and disused thereafter until the mid-eighteenth century based on the absence of later Ostionoid cultural materials and historical records (Righter 2007a: 807-809). The ball belts or stone collars recovered by Righter relating to the Taíno ball courts when considered with the possible use of the caves on the island as ceremonial spaces allude to the use of Guana Island, if not inhabited for permanent or long-term settlement, at least as a place where special events were held by the Taíno on the eastern frontier of their territory.
Excavations conducted in 2008 by Righter and Joshua Kehrburg uncovered additional evidence of Taíno presence on the island. During a shovel test, Kehrburg found a nearly intact bowl of the Elenan Ostionoid style (Figure 45), which Righter dates by its decorative features to both ca. A.D. 900 to 1200 and A.D. 1100 to 1400 in her report (Righter 2008: 2-4). Near the bowl, Righter and Kehrburg found the first prehistoric burial found on Guana located on a flat south of the southernmost road by the beach (Righter 2008: 4). Righter notes, “the head had been deformed” though she does not say how, citing such deformity as a common practice on some Caribbean islands although no references are provided (Righter 2008: 4). Righter removed the bones, wrapped them in foil and noted their provenience, precluding their study in situ (Ibid.). Referencing a paper she wrote in 2007 (not available to the author), Righter hypothesizes that the combination of several factors made the flat a desirable place to live during the prehistoric, and suggests further excavation of the areas where the bowl and skeleton were found, as well as “the undisturbed middens and remains of human activities at ca. A.D. 1100-1400” (Ibid.). Further systematic archaeological research and survey of the island should include, as suggested, thorough investigation of the possible settlement at the flat site and midden.
areas, and some excavation of the caves, involving a search for any petroglyphs or symbolic images, which could help to determine the settlement pattern and use of the island and identify other prehistoric burials at the flat or, possibly, in the caves (though none have been found in the caves to date) (Righter 2007b: 122).

Anegada

The low-lying coralline limestone island of Anegada has been a subject of archaeological interest since the early 18th century when, in 1722, Pere Labat noted the aboriginal population used the island to procure conch. R.H. Schomburgk affirmed in 1832 that large conch (Strombus gigas) shell heaps were still visible on the eastern end of the island (Schomburgk, 1832: 153; Figueredo 1974: 1). Schomburgk also noted footprints left at the west end of the island which he believed were left by the aboriginal people of the island (Schomburgk, 1832: 160). Herbert Krieger also noted the presence of a large shell mound near the eastern end of Anegada and established a collection of other artefacts of pottery, shell and polished stone, but failed to provide the location of his finds or advise whether they were from an identifiable site or were random surface collections (Figueredo 1974: 3; Davis and Oldfield 2003: 1).

In 1974, a three-day archaeological reconnaissance of Anegada was undertaken by a two-man team of Alfredo E. Figueredo and Jeffrey M. Gross of the British Virgin Islands Archaeological Survey (BVIAS) (Gross 1975: 13). Their goal was to locate and examine the previously reported conch shell middens and to assess difficulties in extending the activities of the BVIAS to Anegada. Figueredo and Gross found two shell mounds at the eastern end of the island (Figure 46), one of which they believe was the mound excavated by Krieger based on Krieger’s photograph of the site (Gross 1975: 15).
The first mound rose up to a height of 2 to 3 meters, and covered approximately 200 square meters in area. The second mound was approximately half that height at 1-1.5 meters, and the surface of the mound was mostly covered by sandy soil and sparse vegetation (Ibid.) Test pits of the second mound uncovered a mixed midden deposit with conch (Strombus gigas; Figure 47) and the bivalve Codakia orbicularis. The absence of oyster (Crassostrea rhizophora) was commented on as somewhat suspicious due to the mound’s proximity to a mangrove swamp (Gross 1975: 15). No artefacts other than heaped shell were present on the surface of either mound or its surrounding environs. Several sherds of pottery were recovered from the test pits, though none were of particular diagnostic value. The potsherds were noted to be of a “general thickness, crudeness, and poor paste quality” comparable to that of the Elenoid Series defined from sites in Puerto Rico and other
Virgin Islands (Ibid.). Radiocarbon dates from two conch shells taken from the subsurface midden deposit produced a date of A.D. 1245 ± 80, roughly equivalent to the site at Hull Bay in St. Thomas with pottery of the Ensomhed Style of the Elenoid Series (Ibid.).

![Figure 47. Strombus gigas shell showing small hole in lower end of spire believed to indicate prehistoric collection of the animal as differentiated from modern fisherman’s techniques (drawing by Jeffrey M. Gross) (figure from Gross 1975: 14, 16).](image)

Between 1975 and 2001, it is believed no formal program of archaeological research took place on Anegada as the next reported survey of the island was done by Dave Davis and Kevin Oldfield in 2002. Davis and Oldfield do, however, describe the work of a local resident who reportedly collected hundreds of prehistoric artefacts of pottery, shell and stone, though he had no detailed provenience for any of these items other than references to general locations on the island (Davis and Oldfield 2003: 2). Davis and Oldfield undertook an eleven-day reconnaissance survey of Anegada similar to that conducted by Figueredo and Gross in 1974, but noting only two pre-Columbian sites visible on the surface and the presence of three shell middens they believed were not the same as those previously recorded.
Archaeological sites on Anegada:
1. Anegada I (Davis and Oldfield)
2. Anegada II (Davis and Oldfield); also main habitation site reported by Krieger (Alfredo E. Figueredo, personal communication)
3. Three shell middens (Davis and Oldfield)
4. Location of shell midden identified by GPS coordinates cited by Davis and Oldfield as believed to be the location of the shell midden discovered by Schomburk and later excavated by Figueredo and Gross (Davis and Oldfield 2003: 9) (actual location of Figueredo and Gross site marked with yellow star)
5. “Heaps of Conch Shells” (Schomburk)

Figure 48. Anegada with known archaeological sites of interest. Image courtesy, Google Earth.

Given the geographical features of Anegada, it is subject to natural post-depositional processes (i.e., hurricanes, high waves, earthquakes, etc.) which can dramatically alter its coastlines burying deposits in deep sand or under the sea (Davis and Oldfield 2003: 4-5). It is therefore not surprising that coastal settlement sites, more common on other islands in the Virgin Island group, were not found (Davis and Oldfield 2003: 5). Davis and Oldfield suggest that pre-Columbian inhabitants of other Virgin Islands would have known of Anegada and its salt ponds and availability of a good supply of both conch and fresh water,
and would have visited and possibly established long-term settlements on the island (Davis and Oldfield 2003: 9-10). They suggest future searches for evidence of occupation look near (within 100 meters) salt ponds, areas of darker organic soils and away from the volatile landscape of the western end of the island (Davis and Oldfield 2003: 5, 10).

Figure 49. A Chart of the Islands of Anegada together with the Vessels wrecked thereon, by Chas. Noyce, June 16, 1824. Image courtesy, Bickerstaff’s Books, Maps, &c.

A series of three conch shell middens at the eastern end of the island were discovered which did not appear to be those reported in earlier archaeological survey of the island (Figure 48; Davis and Oldfield 2003: 7). With flat-topped platforms, each mound appeared rectangular in form rising to a height of approximately 50 cm and ranging in area between 70 sq m to 130 sq m (Davis and Oldfield 2003: 7-8). The mounds consist of thousands of
dark blue-gray conchs which appeared heavily weathered and oxidized (Ibid.). Local residents refer to the mounds as an “Indian burial ground.” Davis and Oldfield viewed a map drawn in 1824 by Charles Noyce in the possession of a local resident which showed four triangles in the location of the conch middens labeled, “Pyramids of Conch Shell Left by [illegible] Indians” (Davis and Oldfield 2003: 7-8). The 1824 map drawn by Noyce (Figure 49) may provide the earliest evidence for the recognition of Indian “Charaibe” monuments on the island (Figure 50). Unlike the whitened conch described by Gross, the bluish-gray color of these middens led Davis and Oldfield to speculate they had been burned or covered with earth for a period of time, and acknowledge that further archaeological research would be required to determine their true function (Davis and Oldfield 2003: 9).

Figure 50. Excerpt of 1824 Anegada map drawn by Chas. Noyce showing identification of four "Pyramids of Conch Shells left by the Charaibe Indians." Image courtesy, Bickerstaff’s Books, Maps, &c.

Davis and Oldfield excavated two sites, Anegada I and II, respectively (Figure 48; Davis and Oldfield 2003: 6-7). A local informant led them to the site of Anegada I at the eastern
tip of the island, referring to land with “soil” being a dark organic soil virtually absent elsewhere on the island other than archaeological sites. Anegada I ranged over an area approximately 45 x 30 meters and consisted of shallow (9-22 vertical cm) deposits of dark soils sitting atop limestone bedrock (Davis and Oldfield 2003: 6-7). The soil formation was adequate to support broadleaf trees, unusual elsewhere on the island, and the surface of the site held shell and a low density (25) of potsherds, fish and other bone artefacts (Ibid.). Among the faunal remains were three species of shell (*Codakia orbicularis*, *Strombus gigas*, and *Nerita tessalata*), a variety of fishbone including parrotfish (*Scaridae*), and five fragments of unidentified bird longbone (Davis and Oldfield 2003: 7).

Diagnostically, two rim sherds, one decorated with broad arching curvilinear incision, were found along with four body sherds of a light-colored grit temper that may contain plagioclase feldspar, which is not found on Anegada (Davis and Oldfield 2003: 6-7). Other potsherds were thin with homogeneous pastes and no apparent temper (Davis and Oldfield 2003: 6). No attempt to date the sherds was made, but it was noted they were similar to other Ceramic Age ceramics from other islands in the Virgin Islands group and those found in Puerto Rico (Ibid.). They note the presence of “a large mid-shaft fragment of a ground stone artifact, probably either a pestle or an ax” made of diorite, a volcanic rock found on Virgin Gorda (and elsewhere in the BVIs) but not on Anegada (Ibid. at 6-7). Together with the specimens they viewed in the local unprovenanced collection, they propose the presence of the plagioclase feldspar and diorite in the artefacts found evidence pre-Columbian interaction between Anegada and islands to the west or south (Ibid.).

On their last day of reconnaissance, Davis and Oldfield discovered the site of Anegada II (Figure 48) near the southeastern edge of Anegada’s modern habitation, The Settlement
Like Anegada I, the soil of Anegada II was dark organic, contrasting with the sandy scrub, coral and limestone over much of the rest of the island, and fairly shallow (approximately 8-30 cm) (Ibid.). Collection was minimal – one undecorated rim sherd, three undecorated body sherds and one articular end of a mammalian long bone which they believed to be manatee. The ceramic assemblage was collected on the surface; only the longbone was found in a subsurface context. Clearly, the scant artefacts collected at a surface level (along with more modern artefacts) are insufficient to establish a site of any temporal duration although Davis and Oldfield believe they are consistent with a late pre-Columbian habitation site (Davis and Oldfield 2003: 10).

On July 26, 2010, the author viewed artefacts (consisting of ceramics, shell, bone and stone) allegedly collected by Kevin Oldfield and others on Anegada during 2003 (hereinafter, the “Anegada collection”). The author photographed and studied the artefact assemblages in the “Anegada” collection at the Botanical Gardens on Tortola with the permission of the National Parks Trust, with particular attention given to the ceramics (see Appendix 1: Photographs of 2003 Anegada Collection; all photos by Deborah Davis unless otherwise noted). Kept together in various finds bags, the ceramic artefacts were all from a site named “Anegada I,” which the author presumes relates to the Anegada I site referenced by Davis and Oldfield during their fieldwork in 2002 although this has not been confirmed. The ceramic assemblage consisted of 144 potsherds from five separate contexts (Tables 2 and 3, all notations on artefact bags recorded; ceramic sherds counted by the author).
Table 2. Artefacts from the Anegada 2003 collection viewed by the author.

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth</th>
<th>Date</th>
<th>Initials</th>
<th>Shell</th>
<th>Bone</th>
<th>Pottery</th>
<th>Stone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect II, East (28m)</td>
<td>Surface</td>
<td>7/23/2003</td>
<td>SH, MA, JP, KO</td>
<td>5 conch; 1 undetermined</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Transect II, North</td>
<td>Surface</td>
<td>7/23/2003</td>
<td>KO</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 5, Level 1</td>
<td>0-10cm</td>
<td>7/25/2003</td>
<td>Present</td>
<td>Present</td>
<td>87</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unit W5, S0, Level II</td>
<td>10-20cm</td>
<td>7/24/2003</td>
<td>Present</td>
<td>Present</td>
<td>45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Unit W6, S1, Level III</td>
<td>20-30cm</td>
<td>7/25/2003</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Without knowing the location of the transects and the placement of the units, it is impossible to decipher any spatial pattern to settlement from the collection, assuming it is indeed the “Anegada I” site found by Davis and Oldfield in 2002. However, some general observations about the ceramic assemblage and vertical stratigraphy can be made.

Table 3. Ceramic assemblage of the 2003 Anegada collection by unit and level quantity.

The ceramics in the Anegada collection (Figure 51a through f; Appendix 1) presented a range of colors from light brown to orangey red to very dark, almost black in appearance, though most consisted of red earthenware. Finishes ranged from very rough to smooth, almost polished, and some pieces had smooth reddish exterior surfaces with rougher
interior finishes showing visible inclusions. Thickness varied from .5 cm to 1 cm. Vessel forms were unable to be discerned but two rimsherds were carinated. Rims were rounded, flattened or slightly rounded and thin, one had a folded rim, and two had raised apexes along the circumference of the rim. Several sherds were coated with a lime concretion, the largest of which also appeared to have a reddish slip (Figure 52a and b). A few sherds had horizontal linear incisions under the interior rim, but otherwise the ceramics were undecorated. Pastes ranged from a thick, rough reddish brown with a high degree of visible angular and rounded inclusions to a smooth, dark paste with little or no inclusions. Temper appeared to be a mix of sand and shell with occasional fibers. One sherd had a particularly blackened appearance on the interior side and would merit further investigation as possible organic materials may remain. Spalls were evident in many potsherds from the loss of organic material during firing. Most appeared to have been fired in a more highly oxidized environment, although several dark pieces appeared to have been made via reduced firing.

Table 4. Proportional analysis of the ceramic assemblage of the 2003 Anegada collection.
Figure 51 a through f. Ceramic assemblage of the 2003 Anegada collection.
The author made detailed notes of four particular pieces of pottery from Unit 5, Level 1 (the largest volume of potsherds in the collection; Tables 3 and 4) each exhibiting different procedural and stylistic traits (Figure 53). None of the four sherds exhibited any type of decoration. Sherd 1 was 3 cm x 3.5 cm x 1 cm and made of a thick, rough, reddish-brown paste with a high degree of visible shell and sand inclusions. The exterior surface was slightly lighter in color, and the interior slightly more gray in appearance. Sherd 2 was 4 cm x 2.5 cm x 1 cm with a slightly curving rim reducing in scale to .5 cm at the edge. Slightly smoother than Sherd 1, it was a bright reddish-orange with a grayish cast to the interior. A high degree of visible sand and shell inclusions were present. Sherd 3 was slightly larger at 4.5 cm x 2.5 cm x 1 cm. It was made of a smooth paste with few inclusions of sand and
shell along with some hairlike fibers. The slightly darker reddish-orange exterior contrasted with the slightly yellower interior. The rim was flattened at an angle, not rounded. Sherd 4 was 3.5 cm x 3 cm x .8-9 cm. It was made of a smooth very dark, almost black paste exterior with a thick dark red interior. There were few visible inclusions, but the hairlike fibers were present as noted in Sherd 3.

Table 5. Interpretation of the chronology of stratigraphic occupation layers.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Number of Sherds</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface level</td>
<td>(3 sherds)</td>
<td>3 sherds</td>
</tr>
<tr>
<td>0 - 10 cm</td>
<td>(87 sherds)</td>
<td>87 sherds</td>
</tr>
<tr>
<td>10 - 20 cm</td>
<td>(45 sherds)</td>
<td>45 sherds</td>
</tr>
<tr>
<td>20 - 30 cm</td>
<td>(7 sherds)</td>
<td>7 sherds</td>
</tr>
</tbody>
</table>

Given the lack of definitive provenience, the small quantity of the ceramic assemblage, and the limited time the author had with the collection, it is impossible to classify the pottery with any certainty to any stylistic series or assign any chronological dates to the collection. However, for the purposes of comparative review, some general observations can be made with the caveat that their reliability is highly questionable (Table 5). Stratigraphically considered from the deepest levels upward, the sherds at the 20-30 cm level (7, or 5%) exhibited some characteristics reminiscent of late Saladoid (ca. A.D. 600 - 950) having the appearance of red slip and a smoother polished appearance although coated in a lime
concretion. Two sherds appeared much thicker, of a rough paste with red slip and highly visible inclusions. A reddish slip and smoother appearance continued in the potsherds at the next 10 cm level (45, or 31%). Ceramics at the 0-10 cm level (87, or 60%), become thicker, of a rougher paste with many highly visible inclusions, with most potsherds similar to Elenoid wares (ca. A.D. 950 - 1250). Some reddish slip is still evident. The majority of ceramics were found at this level (Table 4), possibly indicating larger population size or increase in ceramic manufacture and use. Ceramics found at the surface level were either thinner and appeared polished (5, or 4%) with some of the finer potsherds possibly corresponding to Chicoid wares (ca. A.D. 1250) or were significantly thicker, of a deep reddish color with highly visible inclusions (likely sand and shell temper). However, surface sherds are far more likely to have been displaced or disturbed by man-made or natural environmental causes, and therefore in this case diagnostically of little or no value. Taken together, the ceramic assemblage indicates occupation or significant activity at the eastern end of Anegada of a relatively short duration centered around A.D. 1200, which roughly corresponds with the radiocarbon date obtained by Figueredo and Gross in 1974, discussed supra. Further examination and analysis of the ceramic (and faunal) assemblages would be useful to further clarify the settlement and use of the island and its resources. In particular, thin section petrographic analysis of the ceramics would provide an opportunity for comparison of the tempers and sources of clay with other sites in the region.

Great Camanoe

Great Camanoe (Figure 54) lies to the east of Guana Island and directly north of Beef Island at the eastern end of Tortola. There are no published archaeological reports for surveys or investigations on this island. However, Alfredo E. Figueredo surveyed the island
in February, 1974, and found two prehistoric sites (Alfredo E. Figueredo, personal communication). The first site at Cam Bay lies inland of the eastern beach of a tombolo uniting the northern and southern halves of the island, adjacent to a pond in the middle. Figueredo excavated a 1 x 1 meter test pit in 10 cm levels down to approximately 40 cm wherein he reached an apparently sterile stratum. He uncovered several sherds of Elenan style pottery (including one rim fragment that was about one-eighth of a vessel), a rough blank stone petaloid celt lacking polish, and a shell carved to resemble an immature frog, similar to the ones the Taínos called “tona” (approximating a tadpole). He obtained a radiocarbon date calibrated to circa A.D. 1250, similar to the radiocarbon dates for Ensomhed (Hull Bay) on St. Thomas and the conch heap in Anegada discussed supra. Figueredo considers the Cam Bay a single component Elenan site.

Figure 54. Great Camanoe, BVI. Courtesy, Google Earth.
The second site was located in a natural amphitheater formed by the northern hills of the island. In a pedestrian survey (no excavation), Figueredo found a scatter of Elenan potsherds, including some fragments of rims, near a small spring at the foot of the hills. The cultural materials from both sites were deposited with the Territorial Archaeologist, U.S. Virgin Islands State Historic Preservation Office in St. Thomas, U.S. Virgin Islands.
CHAPTER 6: ANALYSIS & INTERPRETATION

Beginning in Shadows

Although there is currently less evidence for prehistoric habitation and interaction of the islands of the BVIs than for the U.S. Virgin Islands or other islands in the Antilles, what research has been conducted has given strong evidence of occupation or activity in the BVIs from the Saladoid through to the Chican Ostionoid (Taíno) culture. While the evidence is not extensive, there are indications of small settlements and possibly seasonal or temporary camps beginning in the Archaic (Krumian Ortoroid) age, as well as sites of organized manufacturing and production of textiles and pottery. Keeping in mind that many of the sites were located on or adjacent to the coast – areas subject to natural forces of destruction (such as hurricanes and flooding) and development by later inhabitants (both historic and modern) – the lack of governmental regulations protecting areas of archaeological interest, and the difficulty of conducting survey given the steep terrain, it is not surprising that only 2 of the 33 (6%) known or reported sites on Tortola (the main island of the BVIs) have been subjected to any systematic excavation. It is without doubt that further archaeological research in the BVIs will enhance our current understanding of the roles these islands played in pre-colonial times.

Detailed analyses of the settlement sites based on population size, geographic location, soil analysis and geological resources are needed to more accurately comprehend settlement patterns and interaction of the BVIs in prehistoric periods. However, such in-depth analyses are not possible or are made less reliable at this time due to several factors. First, there are only about five sites that have received any investigation involving systematic excavation, and of those sites, only one of the major long-term settlements (Belmont) has been subjected to substantial investigation. While dozens of sites are known or reported for the
more than 60 islands in the BVIs, most have been described only on the basis of pedestrian survey or local informants, many of whom have then established unprovenanced, private artefact collections. Surface scatters reported could be the result of sizeable settlements, smaller households moving across the landscape, temporary or seasonal camps, or could have resulted from the disturbing effects of land cultivation and modern development in the past few hundred years. There are few radiometric dates obtained for the known sites, and the reliability of these dates is questionable (cf. Fitzpatrick 2006). There is so much that is not yet known about the prehistory of the BVIs that the islands are ripe for comprehensive, systematic archaeological investigation.

Stepping Into the Light

A review of the existing research indicates the islands of the BVIs appear to have been first visited or settled in the Archaic Age circa 600 B.C. (Drewett 2003b, 2007) although there is scant evidence as of yet for occupation or settlement size in the Archaic and early Saladoid periods. It is likely the first inhabitants were hunter-gatherer foragers and fishermen as no ceramics or long-term settlements have been found for this period. There is evidence for use of the BVIs, Tortola in particular, for ceremonial use in this early pre-ceramic period where two ritually deposited Krum Bay style stone ovates equating to about 600 B.C. (Drewett 2007: 748) and archaic material has been found on Tortola’s highest point at Sage Mountain (Alfredo E. Figueredo, personal communication). It is clear from the limited artefacts found from this period, whether the BVIs were settled in this period or not they were at least known by ancient mariners and visited, though their role may have been isolated at that time to a frontier for early explorers or a place of special significance.

The first long-term settlements appear circa A.D. 50 – 350 with red painted pottery characteristic of the later Saladoid found on the surface at Cane Garden Bay and Josiah’s
Bay (Bates 2001: 137-138, 141; Drewett 2000: 114). Drewett describes these as major long-term settlements, though very little systematic research has been done to date which sheds light on the peoples of the island during this period. Even so, evidence from other islands may prove that the BVIs were, if not occupied, at least frequently visited during the Saladoid period (ca. 50 – 650 A.D.). For example, the copper carbonate on Virgin Gorda may have been used to craft artefacts recovered at the Tutu site on St. Thomas in the U.S. Virgin Islands (Righter 2003: 25).

Cultural materials found in the BVIs, though crafted of locally available materials, closely resemble Saladoid objects from other sites, particularly in the Greater Antilles to the west, highlighting the interaction of the BVIs with other islands in the region. A chert arrowhead stratigraphically dated to ca. A.D. 450 – 650 from Michael Gibbons’s excavations on Guana Island was first thought to have been imported from a source in central Florida (Lazell 2005: 314; Gibbons 1986: 20-21) as there is no locally available source of chert (flint) recorded in the BVIs though this is unlikely as there are much closer known sources in the Lesser Antilles and on Puerto Rico for obtaining flint resources (Knippenberg 2007; Knippenberg and Ziljlstra 2008). Ceramics from Guana Island have been dated to the late Saladoid period and later (Righter 2007a: 808; Righter 2008: 3-4). Pottery from the earliest ceramics recovered at Belmont on Tortola display clear Saladoid traits (Drewett 2007: 748) found throughout the Antillean islands of the Caribbean. The abundance of pelagic fish among the lower levels of excavation at the Cape Wright site on Jost Van Dyke hint at the maritime capabilities of the late Saladoid occupants of the BVIs; if they could organize themselves to successfully fish deeper waters, they certainly possessed the technology and could travel to other islands for trade or other purposes.
There is ample evidence for increasing social complexity in the late Saladoid through early Ostionoid phase. Three radiometric dates for occupation obtained at the Cape Wright site on Jost Van Dyke fall within the range from A.D. 635 – 1040 (Bates 2001: 222-224). Pottery from excavations at Cape Wright exhibit common late-Saladoid qualities (most notably an increasing lack of painted decoration), but are noted as being “Elenan-like” having multi-coiled loop handle features (Bates 2001: 225). Similarly, potsherds from Gun Creek exhibit a later Saladoid (ca. 4th to 5th century) transitional style with less painted decoration but a distinctive analytic mode of a thumb-impressed rim on a beaker-shaped vessel indicative of local preference above regional style (Figueroedo 1972: 134). Evidence for a possible textile industry was found at Gun Creek with the presence of perforated discoidal objects interpreted as spindle whorls (Figueroedo 1980: 28) and at Belmont (Bates 2001: 162; Drewett 2007: 748), further demonstrating the shift from temporary camps to social groups capable of organizing themselves so as to manufacture cotton goods.

While the earliest artefacts found date the first peopling of Guana Island to the late Saladoid period, changes in diet and activity evident in cultural materials indicate they made use of previously unutilized or under-exploited resources and pottery belonging to a new series. At the small settlement on Guana Island, artefacts of ceremonial rites (crude zemis, and fragments of possible ball belts or stone collars associated with the ball game batey) were recovered (Righter 2007a: 808). As the settlement on Guana Island predates the establishment of the ball court at Belmont (ca. 1200), it is likely that the presence of ball belts or stone collars indicates the Guana Island settlers traveled to other islands to participate in the ball game (Alegría 1983), or that the island served as a site for such ritual activity (though no evidence of a ball court at Guana has yet been found) (Righter 2007: 809). This poses as lot of questions as to the use of Guana in the transitional period from
the Saladoid into the Ostionoid (Taíno) complex societies as ball courts were located at important towns and centers where a variety of social interaction – ceremonies, rituals, marriages, trade, games, celebrations, and other exchanges – would have taken place (Wilson 2007: 120-121). Although of relatively small size (approximately 300 ha, or 300 sq km; Lazell 2005: 13) and unlikely to have supported a large population, the evidence for ritual activity related to the Taíno ball game suggests that Guana may have played an integral role in regional politics as a good place for interisland meetings to be held, a similar role posited for Mona Island (approximately 12.5 sq km) off the coast of Puerto Rico where evidence of 3 ball courts has been found (Alegría 1983: 113-114; Wilson 2007: 121).

Drewett posits the long-term settlement at Belmont began in this transitional period (ca. 600 A.D.) (Drewett 2007: 748). The settlement at Belmont included at least one roundhouse formed by two concentric circles of posts being 15 meters in diameter at the outermost circle, which was later replaced by two smaller roundhouses (Drewett 2007: 748). The shape and size of the roundhouse is strikingly similar to two roundhouses dating into the ninth century A.D. excavated at Golden Rock on St. Eustatius by Aad Versteeg and a team from the University of Leiden (Wilson 2007: 88-91). Four crouched burials lacking grave goods were discovered nearby in what is interpreted as the village’s central courtyard (later to become a ball court), although it is unknown whether the burials relate to this earlier period or the later ball court phase (Drewett 2007: 749). This style of burial, too, is similar to the spatial organization of burials at other Saladoid sites, including Golden Rock and Maisabel located on the north-central coast of Puerto Rico (Wilson 2007: 90-94). This shift from what may have been smaller or seasonal/temporary camps to permanent settlements of increasing social complexity demonstrated by the manufacture and use of similar cultural materials, the building of roundhouses and the burial of the deceased in
patterns similar to those of peoples on other islands exhibiting the same Saladoid cultural traits give evidence of the influence of a sphere of interaction for the BVIs with other islands in the Antilles during this period.

Thus far, I’ve addressed the first two questions set out at the beginning of this dissertation showing that the socio-political organization of the prehistoric people of the BVIs was influenced by those of other islands (indicative of interaction) adopting regional traits but also establishing their own local preferences, thus identifying with a larger cultural group while retaining their own distinct kinship groups. As to the third question of whether the BVIs were a regional hub of interaction linking nearby islands in the Antilles chain during prehistoric times, through continuing research it is becoming more clear that they were. “Tortola and its companion islands . . . appear to have served as a strategic crossroads between the Greater Antilles to the west and the Lesser Antilles to the east and south” (Saunders 2005: 287). As the easternmost outpost of the Taíno culture (with the easternmost ball court found to date in the Caribbean), the BVIs were part of a complex polity in the region of the Greater Antilles and the northern Lesser Antilles that was still in existence at the time of European contact. The presence of a central plaza space *cum* ball court at Belmont - the only one located to date in the British Virgin Islands (Drewett 2007: 749; Alegría 1983: 119-121) – constructed ca. A.D. 1200 indicates the status of the site in Taíno society. “The most important Taíno towns and ceremonial centers were organized around these plazas [ball courts]” (Wilson 2007: 120). The ball game was an important part of Taíno life accompanied with much feasting and entertainment (Wilson 2007: 120-123; Alegría 1983; Keegan and Carlson 2008: 80-93). There is also evidence of the Taíno *coba* ritual (Saunders 2005: 66) practiced at Belmont where a vomit spatula and a triton shell trumpet were found. A petroglyph of a sun aligned with Belmont Hill gives evidence of the
ceremonial nature of the site where the sun appears to “roll” down the hill on Midsummer’s Day, possibly enhancing the local shaman’s powers by his apparent ability to predict the changing seasons in connection with that event (Drewett 2000, 2007; Saunders 2005: 287).

Evidence of the involvement of the BVIs as part of the Taíno culture was also found on Virgin Gorda where Chicoid pottery styles most closely resembled that from Hispaniola, and similar to the Taíno heartland styles (Boca Chica and Capá; Figure 9 a and b) as opposed to the geographically closer Esperanza style (Figure 9c) (Figueredo 1972: 135-135). Although the specific provenance is not known, a turtle bowl (Figure 55) from Mosquito Island is strikingly similar to one attributed to the Chican Ostionoid period from the Dominican Republic (Figure 56).

![Figure 55. Chican bowl from Mosquito Island (not to scale). Courtesy, Smithsonian Institution.](image1)

![Figure 56. Chican Ostionoid bowl (ca. AD 1200 - 1500) from the Dominican Republic. Courtesy, Smithsonian Institution [cat. no. 19/7696].](image2)

The Cape Wright site on Jost Van Dyke occupied ca. AD 635 – 1040 with prehistoric material remains associated late Saladoid to Elenan or possibly Chican Ostionoid styles may also given evidence for elements of the Taíno cultural traditions. Burials with grave goods, ritually deposited artefacts, a zemi, and what may have been the eye from a wooden statue mark the Cape Wright settlement as a transitional culture bridging the gap between
the ancestor cult of the Saladoid as redefined in the chiefdoms and ritual traditions of the
later Ostionoid (Taíno) societies (Rouse 1992: 118; Bates 2001: 346-351). There is also
evidence for ceremonial rites having taken place at Cape Wright from remains in midden
deposits, and possibly across the ecotone near the cave on Little Jost Van Dyke as
discussed above, although additional research is needed to clarify the site on Little Jost and
the nature of the inter-island interaction, if any.

Back into the Shadows

And what of our fourth question: did the BVIs suffer a decline in population prior to the
arrival of Columbus? At present, there is no evidence for long-term occupation of the
British Virgin Islands in the late Ostionoid or protohistoric periods, although they may
have been used sporadically as a gathering place for festivals and later as a war-torn frontier
fought over between the Taíno and Caribs (Figueroedo 2006: 396-398). As set out above,
ethnohistoric resources report the islands as uninhabited at the time of European contact,
and there is no mention in the published research that contradicts their reports (although
there may have been Carib refugees living on Tortola during the Dutch occupation in the
mid-17th century, see Figueredo 2006: 397-398). Does this mean that the islands were
uninhabited? Quite possibly, however given the lack of systematic archaeological research
in the BVIs described above, it is also possible that evidence for settlement has been
overlooked or has disappeared. Ecological conditions (rising sea levels, hurricanes, severe
tropical storms, etc.) may have buried or altered sites rendering them inaccessible or
unrecognizable. Land cultivation during the period of European occupation and modern
development may have destroyed or damaged sites. Bias in the way archaeologists and
others have searched for sites on the islands – generally looking for sites in known or
reported areas, places close to critical resources, locations based on previous reported
settlement patterning, or from surveys restricted to accessible areas and relying on surface visibility of cultural material remains – may have unduly limited the number of sites recognized. For example, Drewett’s 1994 survey of Tortola was adversely impacted by the construction of a coastal road which possibly destroyed sites, and the rugged and irregular coastlines with steep slopes and dense vegetation making access to most of the eastern half of Tortola’s north coast impossible to reach by land, forcing approach from the sea (Drewett 2000: 113). Although attempts were made to locate previously reported sites inland, they were generally unsuccessful and survey was otherwise limited only to the coastal fringe (Ibid. at 113-114) searching for evidence of settlement along the coastline as that was the pattern for settlement known on other islands (Ibid. at 1-4). Bates faced similar problems traversing the difficult terrain in his pedestrian survey of Jost Van Dyke and had to abandon the area of his planned survey due to “insurmountable” obstacles caused by the steep slopes and dense vegetation (Bates 2001: 182).

On the other hand, there is the possibility that geological conditions so affected the inhabitants of the BVIs as to force them to leave the islands or perish (Lazell 2005: 315). Geological research has shown that the BVIs were in an area of low rainfall from ca. 550 B.C. until about A.D. 850 followed by a pluvial (wet, rainy) period lasting several hundred years until about A.D. 1150 when more arid conditions returned (Curtis, et al. 2001: 35-54). While settlement may have flourished on the islands while fresh water flowed in the numerous ghuts cutting the steep hills, increasing scarcity of fresh water as those ghuts dried up over time would have made it difficult for people to continue living on the smaller islands of the BVIs with no inland lakes or freshwater springs causing the islands to become depopulated. Further research into the paleoenvironment as well as further archaeological investigation and palynological analysis in the BVIs is merited in order to
determine whether the islands were, in fact, uninhabited prior to their “discovery” by
Columbus in 1493 and their role in the pre-Columbian Caribbean.

Conclusion

In the past several decades, archaeological work in the British Virgin Islands has lagged
behind that undertaken in the U.S. Virgin Islands, resulting in a false disparity of the use
and occupation of the BVIs and downplaying their role in the pre-Columbian Caribbean.

Building on the summary report prepared by Alfredo Figueredo (1974b), this dissertation
attempts to redress part of the problem by providing a comprehensive summary of the
archaeological investigations into the prehistoric settlement of the BVIs to date and
including a comparative review of published (and unpublished, where accessible) reports. It
also draws attention to the periods of isolation, interaction, and possible abandonment of
the islands by examining the evidence for occupation, cultural complexes, and exchange
with other islands throughout prehistoric times.

Archaeological research in the circum-Caribbean region is currently shifting from a view of
unilinear migration (Rouse 1992) to one that encompasses a pan-regional, diachronic, and
cross-cultural comparison of the ways in which prehistoric inhabitants established and
maintained local and regional routes of mobility and exchange as people traveled the
Caribbean waters and moved around the islands while also examining their cultural, social,
biological, and linguistic particularities (Hofman, et al. 2010: 4). Mobility triggered by
seasonal activities, expeditions or other causes for movement (i.e., feasting, marriages,
establishing political alliances) and exchanges of goods and ideas trigger the building of
complex networks of interaction (Ibid.). Having evidence of isolated settlement or
temporary occupation in the Archaic Age through early long-term settlement during the
Saladoid transitioning into the complex polities of the Taíno culture and finally possible
abandonment in the centuries before European contact (as described above), the British Virgin Islands offer many unique opportunities to study their role in a sphere of interaction about which relatively little (compared to the U.S. Virgin Islands and elsewhere in the Caribbean) is currently known. Additional radiometric dates are needed to define the local chronology which has previously been based, in large part, on timelines developed for other islands and presumptions of similar framework patterns of cultural and historical development, and to further inform the interpretation of the cultural materials and settlement patterns reflected in the archaeological evidence with a view to understanding and defining the catalysts for preference and changes and their relation to the wider trends evident on other islands in the region.

This research has identified some key areas where future research should be directed to address questions of settlement structure so as to clarify the socio-political organization of the prehistoric inhabitants of the BVIs. The review of previous excavations has highlighted that large-scale excavations, such as those conducted at Belmont, should be designed to determine the spatial dispersion of houses, middens, cleared spaces, burials, and other features of settlements to determine the use and communal space in relation to the complexity and growth of the cultural inhabitants over time. Smaller excavations and test pits could help to establish the use of resources, intra-island interaction, and diversity of cultural groups occupying the islands. Systematic, island-wide field surveys designed to reduce the effects of bias (due to lack of access, historical development, etc.) should be undertaken for all of the islands in the BVIs as may be possible to examine the early isolation in the Archaic Age (as with cultural materials found at Sage Mountain on Tortola), regional interaction (such as the Taíno ball court at Belmont, possible inter-island meetings on Guana, conch gathering site on Anegada, and possible textile industry on Virgin
Gorda), and potential abandonment of the islands on the eve of Columbian contact (where no direct evidence of Amerindian cultural groups living on the islands at this time has yet been found). As many islands in the BVIs are privately-owned or uninhabited, the likelihood of identifying new or previously unrecorded sites is high as these landscapes would be less like to have been impacted by modern development, i.e., recent excavations on Guana Island finding evidence of settlement of the island that may illuminate its role as a possible inter-island meeting place or a center of Taíno society in the region (Righter 2007a, 2007b, 2008). Identification of prehistoric sites may also assist in their preservation and protection, as they may be suggested for areas for special conservation as Belmont on Tortola has been; without identification and protection or efforts to mitigate damage (i.e., recording), they may be destroyed by future development of the islands, lost due to the actions of modern “pot-hunters,” or disappear forever as a result of environmental or taphonomic impacts.

Archaeological research at these prehistoric sites will help to understand the settlement patterns and cultural materials of prehistoric peoples of the BVI which is key to determining whether changes in societal groups, material goods and exploitation of resources was indicative of local preferences or reflective of the BVIs interaction in a wider regional or pan-Caribbean sphere. Future research should include an analysis of materials available to the Amerindian population of the BVIs and the technology used for comparison with that known for other islands to highlight the influence of other islands in the daily lives of the prehistoric inhabitants of the BVIs. The geology of the islands during the pre-Columbian should be examined, including analysis of paleoenvironmental cores and field survey (i.e., to determine whether there is, as rumored, a chert vein running from the West End of Tortola to Great Thatch) to understand the natural resources of the
islands and how they might have been exploited for trade or exchange with other islands in the region. Palynological studies could shed light on agricultural activities, biodiversity and the environment, particularly with respect to the cultivation of wild cotton and possible presence of cotton textile industry on the islands, and the ability of the islands to support developing human communities and potentially encourage interaction between islands with different resources. Further analysis of the particular diet of the Amerindian populations should be continued, looking not only for components of meals but evidence of resource usage, depletion, preferences, and efforts in obtaining and processing food. Large-scale excavations such as those conducted at Belmont should be designed to determine the spatial dispersion of houses, middens, cleared spaces, burials, and other features of settlements to determine the use and communal space in relation to the complexity and growth of the cultural inhabitants over time. Focused comparisons of cultural materials, diet, settlement patterns and societal groups to other prehistoric sites in the Caribbean would be beneficial in defining trade routes and avenues of exchange for material goods, religious beliefs and practices, social interactions, and ideas. These programs of additional archaeological research building on the previous work described in this dissertation, if undertaken, will help to cast away the shadows surrounding the prehistoric inhabitants of the British Virgin Islands and shed light on their role as a central hub in a regional sphere of interaction in the complex web of relationships in the pre-Columbian Caribbean.
REFERENCES

APPENDIX A